1)Определение. Первообразной для функции f называется такая функция F, производная которой равна данной функции.
2)Если F1 и F2 – две первообразные для одной и той же функции f, то они отличаются на постоянное слагаемое. ... Функция, производная которой тождественно равна нулю, является постоянной. Итак, F1 – F2 = С. Таким образом, все первообразные для функции f получаются из одной из них прибавлением к ней произвольной постоянной.
3)совокупность первообразных функции и называется непределенным интегралом от функции . Совокупность всех первообразных функции называется неопределенным интегралом от и обозначается символическим выражением , которое читается "интеграл от эф от икс по дэ икс".
4) Знак интеграла (∫) используется для обозначения интеграла в математике.
5)Множество всех первообразных F(x)+C функции f(x) называется неопределенным интегралом функции f(x) и обозначается . Символ называется интегралом, f(x) называется подынтегральной функцией, f(x)dx называется подынтегральным выражением, x называется переменной интегрирования.
6)Подынтегральное выражение представляет собой дифференциал функции f(x). Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.
7)Если – одна из первообразных некоторой функции , то совокупность всех первообразных этой функции можно представить в виде , где C – произвольная постоянная. Функция, имеющая первообразную в некотором промежутке, называется интегрируемой, а процедуру нахождения первообразной называют интегрированием этой функции.
8)Неопределенный интеграл его свойства. ... Множество всех первообразных некоторой функции f(x) называется неопределенным интегралом функции f(x) и обозначается как ∫f(x)dx. Таким образом, если F - некоторая частная первообразная, то справедливо выражение ∫f(x)dx=F(x)+C, где C - произвольная постоянная.
9)Метод интегрирования, при котором интеграл с тождественных преобразований подынтегральной функции и применения свойств интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием.
10)Геометрически определённый интеграл выражает площадь «криволинейной трапеции», ограниченной графиком функции[⇨].
11)Формула Ньютона-Лейбница - даёт соотношение между операциями взятия определенного интеграла и вычисления первообразной. Формула Ньютона-Лейбница - основная формула интегрального исчисления. Данная формула верна для любой функции f(x), непрерывной на отрезке [а, b], F - первообразная для f(x).
12)Криволинейная трапеция – плоская фигура, ограниченная графиком неотрицательной непрерывной функции у = f(x), определенной на отрезке [a; b], осью абсцисс и прямыми х = а, х = b – см. рис.
ответ:х=2/3х+1
х-2/3х=1
3/3х-2/3х=1
1/3х=1
х=1÷1/3
х=1/1×3/1
х=3/1 х=3
х-1/2=3/4х
х-3/4х=1/2
4/4х-3/4х=1/2
1/4х=1/2
х=1/2÷1/4
х=1/2×4/1
х=1/1×2/1
х=2/1 х=2
х-2/3=5/6х
х-5/6х=2/3
6/6х-5/6=2/3
1/6х=2/3
х=2/3÷1/6
х=2/3×6/1
х=2/1×2/1
х=4/1 х=4
1 4/5у=у+4
1 4/5у-у=4
4/5у=4
у=4÷4/5
у=4/1×5/4
у=1/1×5/1 у=5
2/3у-1/3=5/9у
2/3у-5/9у=1/3
6/9у-5/9у=1/3
1/9у=1/3
у=1/3÷1/9
у=1/3×9/1
у=1/1×3/1
у=3/1 у=3
3/4у-2/3=7/12у
3/4у-7/12у=2/3
9/12у-7/12у=2/3
2/12у=2/3
1/6у=2/3
у=2/3÷1/6
у=2/3×6/1
у=2/1×2/1
у=4/1 у=4
Объяснение:
////////////////////////////////////////////////////