1)cos a = -0.5 в двух точках на единичной окружности , при а=2pi/3 и -2p/3
Учтем что период косинуса 2 пи, поэтому
pi(10x-7)/9=2pi/3+2pik ; (10x-7)/9=2/3+2k; 10x/9=2/3+7/9+2k;
x=9(13/9+2k)/10; x=1.3+1.8k; k-целое
наибольший отрицательный корень при к=-1
x1=1.3-1.8=-0.5
pi(10x-7)/9=-2pi/3+2pik; (10x-7)/9=-2/3+2k; 10x/9=-2/3+7/9+2k;
x=9(1/9+2k)/10; x=0.1+1.8k; k-целое
наибольшее из отрицательных при к=-1
x2=0.1-1.8=-1.7-меньше х1-не подходит
ответ x=-0.5
2)sin a=-√2/2 при a=-pi/4 и -3pi/4
такой же период 2пи
pi(2x-5)/2=-pi/4+2pik;(2x-5)/2=-1/4+2k; x=-1/4+5/2+2k; x1=9/4+2k=2.25+2k
наибольшее отрицательное при к=-2
x1=2.25-4=-1.75
pi(2x-5)/2=-3pi/4+2pik;(2x-5)/2=-3/4+2k; x=-3/4+5/2+2k; x2=7/4+2k=1.75+2k
наибольшее отрицательное при к=-1
x2=1.75-1=-0.25-больше х1, подходит
ответ x=-9.25
Приятного и Вам дня!
график функции у = x^2 + 2x + c касается обеих прямых => координаты точек касания удовлетворяют и равенству у = x^2 + 2x и уравнению прямой-касательной...
начнем со второй прямой (там все известно...)
у = 4х + 3 ---касательная, => угловой коэффициент касательной 4 = у'(x0)
y'(x) = 2x+2
2x0 + 2 = 4 => x0 = 1 ---абсцисса точки касания с прямой у = 4х + 3
ордината (у) точки касания у = 4*1+3 = 7 и точка (1; 7) принадлежит графику функции
у = x^2 + 2x + c => 7 = 1^2 + 2*1 + c => 7 = 3+c => c = 4
график функции у = x^2 + 2x + 4 касается и прямой у = kx =>
k = у'(x0) = 2x0 + 2 => x0 = (k-2)/2 = k/2 - 1 ---абсцисса точки касания с прямой у = kх
ордината (у) точки касания y(x0) = k*x0 = k*(k/2-1) = k*k/2 - k
и с другой стороны ордината (у) точки касания y(x0) = (x0)^2 + 2*x0 + 4 =
(k/2-1)^2 + 2(k/2-1) + 4
получилось уравнение: k*k/2 - k = (k/2-1)^2 + 2(k/2-1) + 4
k*k/2 - k = k*k/4-k+1 + k-2 + 4 ---умножим обе части равенства на 4
2*k*k - 4k - k*k - 12 = 0
k*k - 4k - 12 = 0
по т.Виета k1 = 6 k2 = -2
ответ: пары (c; k): (4; -2), (4; 6)
вроде так...
837838363836383683738383638383538