кор. 4 ст (x+8) – кор. 4 (x-8) = 2
u^4=x+8 (1)
v^4=x-8 (2)
Тогда
u-v=2
C другой стороны вычтем из (1) (2), получим
u^4 –v^4 = 16
Получаем систему
u-v=2
u^4 –v^4 = 16
Из 1-го уравнения определим u
u = v+2
Подставим во второе уравнение
(v+2)^4-v^4=16
(-v^4-16) + (v^4+8v^3+24v^2+32v+16)=0
8v^3+24v^2+32v=0
v(8v^2+24v+32)=0
Имеем,
v=0
и
8v^2+24v+32=0
v^2+3v+4=0
D=3^2-4-4*1*4=-7 < 0 – нет решений
То есть имеем одно решение v=0, тогда u = v+2=2
u^4=x+8 или x+8=2^4=16, откуда x=8
!x+2! - !x-3! + !2x+6! =4
Очередной раз напомню. Модуль это всегда положительное число, расстояние от числа до начала координат. и раскрываются они если положительное число, то такое же число, если отрицательное то с минусом
Раскрываем модули
!2x+6! !x+2! !x-3!
x<-3 -(2x+6) -(x+2) -(x-3) 1
-3<x<-2 2x+6 -(x+2) -(x-3) 2
-2<x<3 2x+6 x+2 -(x-3) 3
x>3 2x+6 x+2 (x+3) 4
!x+2! - !x-3! + !2x+6! =4
1. -(x+2) - (-(x-3)) + (-(2x+6)) =4
-x-2+x-3-2x-6=4
-2x=15
x=-15/2 x<-3 подходит
2. -(x+2) - (-(x-3)) + (2x+6) =4
-x-2+x-3+2x+6=4
2x=3
x=3/2 -3<x<-2 нет решений
3. (x+2) - (-(x-3)) + (2x+6) =4
x+2 +x-3 + 2x+6=4
4x=-1
x=-1/4 -2<x<3 подходит
4. (x+2) - (x-3) + (2x+6) =4
x+2-x+3+2x+6=4
2x=-7
x=-7/2 x>3 нет корней