М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Avetazatan
Avetazatan
30.03.2020 17:32 •  Алгебра

(нужно z1=1+j z2=-2-3j найти z1+z2, z1•z2, z1%z2, z1-z2

👇
Ответ:
titomeister
titomeister
30.03.2020

z1+z2=1+j+(-2-3j)=-1-2j

z1*z2+(1+j)(-2-3j)=-2-3j-2j-3j^2=-2-5j-3j^2

z1/z2=(1+j)/(-2-3j)=-(1+j)/(2+3j)

z1-z2=1+j-(-2-3j)=1+j+2+3j=3+4j

вроде так,если правильно поняла задание

4,8(78 оценок)
Открыть все ответы
Ответ:
oli21
oli21
30.03.2020
Поскольку необходимо представить число 68 в виде суммы двух чисел, то пусть первое число х, тогда второе число (68-х).
Тогда сумма квадратов слагаемых будет равна:
х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624

Здесь можно найти минимальное значение 2-мя
1) с производной
(2х²-136х+4624)'=4x-136
4x-136=0
4x=136
x=136:4
х=34
Значит будет 2 одинаковых положительных числа 34 и 34.

2) с графика
y=2х²-136х+4624
Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы.
х₀=-b/2a=-(-136)/4=34

34+34=68
4,6(24 оценок)
Ответ:
stanislavgulya
stanislavgulya
30.03.2020

При имеющихся исходных данным возможно 2 ответа:

1) b₁ = 6; q = 1/4;

1) b₁ = -6; q = -1/4;

Объяснение:

Член геометрической прогрессии с номером n вычисляется по формуле

b_{n} = b_{1} \cdot q^{n-1}

b₄ - b₂ = b₁ · q³ - b₁· q  = b₁q(q² - 1)

b₆ - b₄ = b₁ · q⁵ - b₁· q³  = b₁q³(q² - 1)

По условию

b₁q(q² - 1) = -45/32    (1)

b₁q³(q² - 1) = -45/512    (2)

Преобразуем выражение (2)

b₁q³(q² - 1) = b₁q(q² - 1) · q²

В численном виде это можно записать как

-45/512 = -45/32 ·  q²

Откуда

q² = -45/512 : (-45/32)

q² = 1/16

q = ±1/4

Подставим q = 1/4 в выражение (1)

\dfrac{b_{1}}{4}\cdot \Big (\dfrac{1}{16} -1 \Big )= - \dfrac{45}{32}

\dfrac{b_{1}}{4}\cdot \Big (-\dfrac{15}{16} \Big )= - \dfrac{45}{32}

\dfrac{-15b_{1}}{64} = -\dfrac{45}{32}

0.5b₁ = 3

b₁ = 6

Подставим q = -1/4 в выражение (1)

-\dfrac{b_{1}}{4}\cdot \Big (\dfrac{1}{16}-1 \Big )= - \dfrac{45}{32}

-\dfrac{b_{1}}{4}\cdot \Big (-\dfrac{15}{16} \Big )= - \dfrac{45}{32}

\dfrac{15b_{1}}{64} = -\dfrac{45}{32}

0.5b₁ = -3

b₁ = -6

Проверка:

1) b₁ = 6; q = 1/4

b₂ = 6 ·  1/4 = 3/2

b₄ = 6 · 1/64 = 3/32

b₄ - b₂ = 3/32  - 3/2 = -45/32

b₆ = 6 ·  1/1024 = 3/512

b₆ - b₄ = 3/512  - 3/32 = -45/512

2) b₁ = -6; q = -1/4

b₂ = -6 ·  (-1/4) = 3/2

b₄ = -6 · (-1/64) = 3/32

b₄ - b₂ = 3/32  - 3/2 = -45/32

b₆ = -6 ·  (-1/1024) = 3/512

b₆ - b₄ = 3/512  - 3/32 = -45/512

4,5(95 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ