Объяснение:
4.
log₀,₅(4-x)≥log₀,₅2-log₀,₅(x-1)
ОДЗ: 4-x>0 x<4 x-1>0 x>1 ⇒ x∈(1;4).
log₀,₅(4-x)-log₀,₅2+log₀,₅(x-1)≥0
log₀,₅((4-x)*(x-1)/2)≥0
(4-x)*(x-1)/2≤0,5⁰
(4-x)*(x-1)/2≤1
(4-x)*(x-1)/2-1≤0
((4x-4-x²+x)-2)/2≤0 |×2
4x-4-x²+x-2≤0
-x²+5x-6≤0 |×(-1)
x²-5x+6≥0
x²-5x+6=0 D=1
x₁=2 x₂=3 ⇒
(x-2)(x-3)≥0
-∞__+__2__-__3__+__+∞ ⇒ x∈(-∞;2]U[3;+∞).
Учитывая ОДЗ:
ответ: x∈(1;2]U[3;4).
5.
{xy+x+y=15 {xy+x+y=15
{x²y+xy²=54 {xy*(x+y)=54
Пусть x+y=t, a xy=v ⇒
{t+v=15 {v=15-t {v=15-t {v=15-t
{tv=54 {t*(15-t)=54 {15t-t²-54=0 |×(-1) {t²-15t+54=0
t²-15t+54=0 D=9 √D=3
{t₁=x+y=6 {y=6-x {y=6-x {y=6-x
{v₁=xy=9 {x*(6-x)=9 {6x-x²-9=0 |×(-1) {x²-6x+9=0
{y=6-x {y=6-x y₁=3
{(x-3)²=0 {x-3=0 x₁=3.
{t₂=x+y=9 {y=9-x {y=9-x {y=9-x
v₂=xy=6 {x*(9-x)=6 {9x-x²-6=0 |(×-1) {x²-9x+6=0 D=57
y₂=(9+√57)/2 y₃=(9-√57)/2
x₂=(9-√57)/2 x₃=(9+√57)/2.
ответ: x₁=3 y₁=3 x₂=(9-√57)/2 y₂=(9+√57)/2
x₃=(9+√57)/2 y₃=(9-√57)/2.
6.
y=eˣ*cosx
y'=(eˣ)'*cosx+eˣ*(cosx)'=eˣ*cosx+eˣ*(-sinx)=eˣ*cosx-eˣ*sinx
y'=eˣ*(cosx-sinx).
Объяснение:
4.
log₀,₅(4-x)≥log₀,₅2-log₀,₅(x-1)
ОДЗ: 4-x>0 x<4 x-1>0 x>1 ⇒ x∈(1;4).
log₀,₅(4-x)-log₀,₅2+log₀,₅(x-1)≥0
log₀,₅((4-x)*(x-1)/2)≥0
(4-x)*(x-1)/2≤0,5⁰
(4-x)*(x-1)/2≤1
(4-x)*(x-1)/2-1≤0
((4x-4-x²+x)-2)/2≤0 |×2
4x-4-x²+x-2≤0
-x²+5x-6≤0 |×(-1)
x²-5x+6≥0
x²-5x+6=0 D=1
x₁=2 x₂=3 ⇒
(x-2)(x-3)≥0
-∞__+__2__-__3__+__+∞ ⇒ x∈(-∞;2]U[3;+∞).
Учитывая ОДЗ:
ответ: x∈(1;2]U[3;4).
5.
{xy+x+y=15 {xy+x+y=15
{x²y+xy²=54 {xy*(x+y)=54
Пусть x+y=t, a xy=v ⇒
{t+v=15 {v=15-t {v=15-t {v=15-t
{tv=54 {t*(15-t)=54 {15t-t²-54=0 |×(-1) {t²-15t+54=0
t²-15t+54=0 D=9 √D=3
{t₁=x+y=6 {y=6-x {y=6-x {y=6-x
{v₁=xy=9 {x*(6-x)=9 {6x-x²-9=0 |×(-1) {x²-6x+9=0
{y=6-x {y=6-x y₁=3
{(x-3)²=0 {x-3=0 x₁=3.
{t₂=x+y=9 {y=9-x {y=9-x {y=9-x
v₂=xy=6 {x*(9-x)=6 {9x-x²-6=0 |(×-1) {x²-9x+6=0 D=57
y₂=(9+√57)/2 y₃=(9-√57)/2
x₂=(9-√57)/2 x₃=(9+√57)/2.
ответ: x₁=3 y₁=3 x₂=(9-√57)/2 y₂=(9+√57)/2
x₃=(9+√57)/2 y₃=(9-√57)/2.
6.
y=eˣ*cosx
y'=(eˣ)'*cosx+eˣ*(cosx)'=eˣ*cosx+eˣ*(-sinx)=eˣ*cosx-eˣ*sinx
y'=eˣ*(cosx-sinx).
5+7/75
-68
5
Любое число
3а^7
>0
Объяснение:
1)Корень из 144 - 12, корень отношения равен отношению корней, тогда корень из 16/225 равен корню из 16 делить на корень из 225, кор из 16= 4, из 225= 15. Корень некого числа в квадрате есть подкоренное число,откуда:
1/3*12+5*4/15-0,04*6=5 целых 7/75
2) корень из произведения равен произведению корней, тогда корень из 98 = корню из двух умножить на корень из 49, где второй равен 7.
150*6=900,кор из 900 = 30, корень из 7 в 4= 7 в квадрате, а из 3 в квадрате равен модулю трех, но оставим как три, тогда 49+30-49*3=-68
3)разделим обе части уравнения на 2, тогда корень из икс минус 1 = 2, возведем в квадрат, зная что 2 число больше нуля, откуда х-1=4,а значит х=5.
4)заметим, что в правой части неравенства отрицательное число, но квадратный корень по определению числу больше либо равное нулю, что всегда больше любого числа, а значит решение будет любое действительное икс( от минус беск, до +беск)
5)корень из 36 = 6, корень из а^6=а^3, для любых а,даже нуля меньших, тогда получим 3а^7(при произведении степеней с одинаковыми основаниями, основание остается то же, а показатели складываются 3+4=7)
6)Допустимые значения переменной, те значения, которые не нарушают какие-то правила в вычислениях. На нуль делить нельзя, значит, корень из икс минус 3 не равно нулю, а подкоренное - неотрицательно, значит, корень из икс не равно минус 3, что верно для всех икс, а следовательно остается только икс больше нуля.