Баржа в 8: 00 вышла из пункта а в пункт в,расположенный в 21 км по реке от пункта а.пробыв в пункте в 1 час,баржа отправилась назад и вернулась в пункт а в 16: 00.определите скорость течения реки,если известно,что собственная скорость баржи 8 км/ч
1) В случае , когда выражение 3а больше (2а+1) в 2 раза ; или (2а+1) меньше 3а в 2 раза. 3а / (2а + 1 ) = 2 3а = 2(2а + 1) 3а = 4а + 2 3а - 4а = 2 -а = 2 а = - 2
2) В случае , если (2а+1) больше 3а в 2 раза , или 3а меньше (2а+1) в 2 раза. (2а + 1) / 3а = 2 2а + 1= 2*3а 2а + 1 = 6а 2а - 6а = - 1 - 4а = - 1 4а = 1 а = 1/4 а = 0,25
(2*0,25+1)/(3*0,25) = 1,5/0,75=2 (раза)
ответ : при а₁ = -2 , а₂= 0,25 выражения 3а и (2а+1) отличаются в 2 раза.
Давай начнем с того, что обозначим неизвестное расстояние от лагеря до места, где туристы причалили к берегу. Пусть это расстояние будет равно х километрам.
Теперь мы знаем, что туристы плыли вверх по течению реки, поэтому скорость лодки относительно берега будет равна разности скорости лодки и скорости течения реки: 6 км/ч - 3 км/ч = 3 км/ч.
Затем туристы гуляли 2 часа и вернулись обратно через 6 часов от начала путешествия. Обратите внимание, что если они вернулись через 6 часов, то скорость лодки относительно берега должна быть такой же, как и вначале путешествия.
Итак, теперь они плывут вниз по течению реки и скорость лодки относительно берега равна 3 км/ч.
Так как расстояние равно скорости умноженной на время, для пути вверх по течению реки мы можем записать уравнение: время в пути вверх по течению равно расстоянию, деленному на скорость.
Таким образом, время в пути вверх по течению будет: х км / 3 км/ч = х/3 часа.
После того, как туристы вернулись обратно, они плыли вниз по течению реки, поэтому время в пути вниз по течению будет: х км / 3 км/ч = х/3 часа.
Теперь мы знаем, что время гуляния составило 2 часа, и обратное путешествие заняло 6 часов. Следовательно, общее время путешествия будет равно сумме времени в пути вверх и вниз, а это равно x/3 + x/3 + 2 часа.
Мы также знаем, что обратное путешествие заняло 6 часов, поэтому мы можем записать уравнение: x/3 + x/3 + 2 = 6.
Сначала мы можем объединить две части x/3 в одну: 2x/3 + 2 = 6.
Затем вычтем 2 из обеих сторон уравнения: 2x/3 = 4.
Далее умножим обе части уравнения на 3: 2x = 12.
И наконец, разделим обе части уравнения на 2: x = 6.
Таким образом, расстояние от лагеря до места, где туристы причалили к берегу, равно 6 километрам.
х км/ч - скорость течения
8+х км/ч - скорость лодки по течению
8-х, км/ч - скорость лодки против течения
16-8-1 = 7 часов - время в пути, составим ур-е
21 + 21 =7
8+х 8-х
3 + 3 =1
8+х 8-х
3 (8-х) + 3(8-х) = 1
64 - х^2
24-х+24+х=64-х^2
x^2=64-48=16
x=4 км/ч - скорость течения