М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
murat121221
murat121221
09.10.2022 04:08 •  Алгебра

1)a^3b-4ab^3 2)7a^2-14ab+7b^2 3)x^2+2x-y^2-6y-8 разложить на множители.

👇
Ответ:
denissss2222
denissss2222
09.10.2022

1)ab(a^2-4b^2)=ab(a-2b)(a+2b)

2)7(a^2-2ab+b^2)=7(a-b)^2

3)(x^2+2x+1)-(y^2+6y+9)=(x+1)^2-(y+3)^2=(x+1-y-3)(x+1+y+3)=(x-y-2)(x+y+4)

4,4(57 оценок)
Открыть все ответы
Ответ:
Kotik5l6
Kotik5l6
09.10.2022

Задание:

Решите уравнение.

x=4.

Объяснение:

\displaystyle \frac{x^2-6x+8}{x^2-4x+4}=0

Дробь равна нулю, если числитель ему равен, а знаменатель — нет:

x^2-6x+8=0\\D=b^2-4ac=(-6)^2-4\cdot1\cdot8=36-32=4.\\

Так как D0, то уравнение будет иметь два действительные корни, которые находятся по формуле:

\displaystyle x_{1/2}=\frac{-b\pm\sqrt{D} }{2a}=\frac{-(-6)\pm\sqrt{4} }{2\cdot1} =\frac{6\pm2}{2}.x_1 =\frac{6-2}{2}=\frac{4}{2}=2,x_2=\frac{6+2}{2}=\frac{8}{2}=4.

Но теперь надо проверить: подходят ли эти корни:

x^2-4x+4\neq 0\\(x-2)^2\neq 0\\x-2\neq 0\\x\neq 2.

Теперь можем выяснить, что корень -2 не подходит, так как не входит в ОДЗ.

Для точной проверки можно подставить корень 4. Но это делать не обязательно:

\displaystyle \frac{4^2-6\cdot4+8}{4^2-4\cdot4+4}=\frac{16-24+8}{16-16+4}=\frac{0}{4}=0.\\

Да, действительно корень 4 является решением уравнения.

Также можно доказать, что корень 2 не является решением:

\displaystyle \frac{2^2-6\cdot2+8}{2^2-4\cdot2+4}= \frac{4-12+8}{4-8+4}=\frac{0}{0}\neq 0.

Все правильно, так как на ноль делить нельзя.

4,7(1 оценок)
Ответ:
Мороз25
Мороз25
09.10.2022

Задание:

Решите уравнение.

x=4.

Объяснение:

\displaystyle \frac{x^2-6x+8}{x^2-4x+4}=0

Дробь равна нулю, если числитель ему равен, а знаменатель — нет:

x^2-6x+8=0\\D=b^2-4ac=(-6)^2-4\cdot1\cdot8=36-32=4.\\

Так как D0, то уравнение будет иметь два действительные корни, которые находятся по формуле:

\displaystyle x_{1/2}=\frac{-b\pm\sqrt{D} }{2a}=\frac{-(-6)\pm\sqrt{4} }{2\cdot1} =\frac{6\pm2}{2}.x_1 =\frac{6-2}{2}=\frac{4}{2}=2,x_2=\frac{6+2}{2}=\frac{8}{2}=4.

Но теперь надо проверить: подходят ли эти корни:

x^2-4x+4\neq 0\\(x-2)^2\neq 0\\x-2\neq 0\\x\neq 2.

Теперь можем выяснить, что корень -2 не подходит, так как не входит в ОДЗ.

Для точной проверки можно подставить корень 4. Но это делать не обязательно:

\displaystyle \frac{4^2-6\cdot4+8}{4^2-4\cdot4+4}=\frac{16-24+8}{16-16+4}=\frac{0}{4}=0.\\

Да, действительно корень 4 является решением уравнения.

Также можно доказать, что корень 2 не является решением:

\displaystyle \frac{2^2-6\cdot2+8}{2^2-4\cdot2+4}= \frac{4-12+8}{4-8+4}=\frac{0}{0}\neq 0.

Все правильно, так как на ноль делить нельзя.

4,7(35 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ