Пусть объём бассейна равен 1, тогда время его заполнения до ремонта первым насосом – x, а вторым – y часов. Значит, 1/x - производительность первого насоса до ремонта, а 1/y - производительность второго насоса до ремонта. Зная, что бассейн до ремонта насосов заполняется за 8 часов, то составим первое уравнение: 8(1/x+1/y)=1
1,2(1/x) - производительность первого насоса до ремонта, а 1,6(1/y) - производительность второго насоса после ремонта. Зная, что бассейн после ремонта насосов заполняется за 6 часов, то составим второе уравнение: 6(12/x+16/y)=1.
Решив совместно эти два уравнения , получаем : x=12, y=24.
Из найденных значений для x и y вычислим производительность первого насоса после ремонта: 1,2(1/x)=(1,2*1)/12=0,1
По формуле t=A/P найдём время наполнения бассейна при работе только первого насоса после ремонта: 1/0,1=10 ч.
ответ: 10 ч.
Поставь лучший ответ
В решении.
Объяснение:
Решите задачу с составления уравнения. Сумма двух чисел равна 26, а разность их квадратов 52. Найдите эти числа.
х - первое число.
у - второе число.
По условию задачи система уравнений:
х + у = 26
х² - у² = 52
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 26 - у
(26 - у)² - у² = 52
676 - 52у + у² - у² = 52
-52у = 52 - 676
-52у = -624
у = -624/-52
у = 12 - второе число.
х = 26 - у
х = 26 - 12
х = 14 - первое число.
Проверка:
14 + 12 = 26, верно.
14² - 12² = 196 - 144 = 52, верно.