М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
komikadza
komikadza
15.04.2023 14:02 •  Алгебра

Решить и понять как записывать ответ,завтра егэ , а мне до сих пор не ясно где pin,а где 2pin? ? заранее ) sinx=1/2 sinx=sqrt2/2 sinx=-1/2 sinx=-sqrt2/2 cosx=sqrt3/2 cosx=sqrt2/2 cosx=1/2 cosx=-1/2 cosx=-sqrt2/2 cosx=-sqrt3/2 tgx=0 tgx=1/sqrt3 tgx=1 tgx=sgrt3 tgx=-1/sqrt3 tgx=-1 tgx=-sgrt3

👇
Ответ:
rakitina03
rakitina03
15.04.2023

У меня тоже завтра ЕГЭ)) 

sinx=1/2 

х = (-1)ⁿ π/6 +πn , n∈Z 

sinx=-1/2

х= (-1)ⁿ⁺¹ π/6 +πn , n∈Z

cosx=1/2

x = ± π/3 + 2πn , n∈Z

cosx=-1/2

x = ± 2π/3 + 2πn , n∈Z 

tgx=0

x= πn , n∈Z  

tgx=1

x= π/4 +πn , n∈Z    

tgx=-1

x=-π/4 +πn , n∈Z    

Остальные можно вычислить по формулам(в вложении) 


Решить и понять как записывать ответ,завтра егэ , а мне до сих пор не ясно где pin,а где 2pin? ? зар
4,8(16 оценок)
Ответ:

sinx=1/2

x=(-1)^k*p/6+pk; k принадлежит Z

Здесь записываем просто pk, потому что это специальная формула, включающая в себя оба возможных корня уравнения: x=(-1)^k*arcsin a+pk.

sinx=sqrt2/2

x=(-1)^k*p/4+pk; k принадлежит Z

sinx=-1/2

x=(-1)^k+1*p/6+pk; k принадлежит Z. Здесь в степени поставили k+1 вместо обычного k чтобы не писать минус перед арксинусом (т.е. фактически у нас было записано (-1)^k*(-p/6)+pk; а это то же самое, что (-1)^k*(-1)*p/6+pk, и чтобы не писать второй раз (-1), просто добавляем единицу в степень.

sinx=-sqrt2/2

x=(-1)^k+1*p/4+pk; k принадлежит Z

cosx=sqrt3/2

Формула для случая с косинусом: x=arccos a+2pk и x=-arccos a+2pk

x=+p/6+2pk; x=-p/6+2pk; можно писать просто x=+-p/6+2pk; k принадлежит Z.

cosx=sqrt2/2

x=+-p/4+2pk; k принадлежит Z

cosx=1/2

x=+-p/3+2pk; k принадлежит Z

cosx=-1/2

В случае с минусом формула принимает вид: x=p-arccos a+2pk и

x=-(p-arccos a)+2pk

x=+-2p/3+2pk; k принадлежит Z

cosx=-sqrt2/2

x=+-3p/4+2pk; k принадлежит Z

cosx=-sqrt3/2

x=+-5p/6+2pk; k принадлежит Z

tgx=0

Так как tg=sin/cos, tg=0 там, где синус равен 0. Там же, где косинус равен 0, тангенса просто не существует. Т.е

x=pk; k принадлежит Z

tgx=1/sqrt3

Тут используем формулу x=arctg a+pk; т.к. у тангенса и котангенса период обращения равен P, а не 2P, как у синуса и косинуса. Т.е.

x=p/6+pk; k принадлежит Z

tgx=1

x=p/4+pk; k принадлежит Z

tgx=sqrt3

x=p/3+pk; k принадлежит Z

tgx=-1/sqrt3

Формула для случая с минусом: x=-arctg a+pk; 

x=-p/6+pk; k принадлежит Z

tgx=-1

x=-p/4+pk; k принадлежит Z

tgx=-sqrt3

x=-p/3+pk; k принадлежит Z

 

В случае если попадётся ещё котангенс, там формула будет почти та же, что и у тангенса, т.е.: x=arcctg+pk; а в случае минуса x=arcctg+pk или x=p-arcctg+pk, то есть годятся оба варианта. 

4,7(10 оценок)
Открыть все ответы
Ответ:
azim20071
azim20071
15.04.2023

Объяснение:

Было число:

X = 1000a + 100b + 10c + d

У него поменяли первую и последнюю цифры, стало:

Y = 1000d + 100b + 10c + a

Потом эти два числа сложили, получилось:

X + Y = 1001a + 200b + 20c + 1001d

И оно делится на 91 = 7*13. Выделим числа, кратные 91, и найдем остаток.

Заметим, что 1001 = 7*11*13 = 91*11, поэтому 1001а и 1001d кратны 91.

X + Y = 91*11a + 91*11d + 91*2b + 18b + 20c

Остаток от деления на 91 равен 18b + 20c. И этот остаток тоже должен делиться на 91.

Так как b и с - однозначные цифры, то 18b + 20c ≤ 18*8+20*9 = 324.

К тому же, число 18b + 20c - четное, и может равняться только 91*2=182.

18b + 20c = 182

9b + 10c = 91.

b = 9; c = 1; 9b + 10c = 9*9 + 10*1 = 91

Это решение - единственное.

Значит, число имело вид:

X = 1000a + 910 + d

Нам надо доказать, что оно НЕ делится на 91.

Ясно, что 910 делится на 91.

Число X может делиться на 91, только если 1000a + d делится на 91.

А это возможно, только если это числа вида: 1001; 2002; ...; 9009.

Во всех случаях a = d, но это неправильно: по условию мы взяли число из 4 разных цифр.

Таким образом, мы доказали, что число

X = 1000a + 100b + 10c + d

Не может быть кратно 91, при заданных в задаче условиях.

4,4(45 оценок)
Ответ:
Юлька1606
Юлька1606
15.04.2023

ответ: делиться на 11 такое число не может.

Обоснование. Как известно, число делится на 11 тогда и только тогда, когда сумма цифр, стоящих на нечетных местах, отличается от суммы цифр, стоящих на четных, на число, делящееся на 11 (как частный случай эти суммы могут совпадать). Однако в нашем случае максимальное возможное отличие равно 8 (из двузначных это число 19, из трехзначных 129, 239, ..., 789).  Докажем, что больше 8 никогда не получится.

1) Пусть в числе четное число знаков: a_1a_2\ldots a_{2n}. Тогда

(a_{2n}-a_{2n-1})+\ldots +(a_2-a_1) - это часть расстояния от  a_1 до a_{2n}, а поскольку первая цифра не меньше 1, а последняя не больше 9, эта сумма не больше 8.

2) Пусть в числе нечетное число знаков: a_1a_2\ldots a_{2n+1}. Тогда

a_{2n+1}-a_{2n}+\ldots -a_2+a_1=a_{2n+1}-((a_{2n}-a_{2n-1})+\ldots +(a_2-a_1)),

то есть из a_{2n+1} вычитается часть расстояния между a_1 и a_{2n}

Поэтому снова больше 8 получиться не может.

Но одновременно мы видим, что  0 также не может получиться.

Вывод: число, у которого цифры идут в порядке возрастания, на 11 делиться не может.

4,4(20 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ