Если А и В лежат по одну сторону от прямой, то расстояние от середины отрезка до прямой равно полусумме расстояний от концов отрезка до этой прямой. Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3. Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π. Это в том случае, если косинус х.( без скобок).
Решение: Обозначим зарплату мамы за (х) руб, папы за (у) руб, пенсию бабушки за (z) руб, месячный доход семьи за D (руб), тогда: х+у+z=D (1) Согласно условия задачи,если при повышении в следующем году зарплаты маме на 20%, месячный доход семьи увеличится на 6% или (х+20%*:100%)+у+z=D+6%*D:100% (х+0,2х)+у+z=D+0,06D 1,2x+y+z=1,06D (2) При повышении зарплаты папе на 20%, месячный доход увеличится на 10% или: х+(у+20%*у:100%)+z=D+10%*D:100% x+(y+0,2y)+z=D+0,1D x+1,2y+z=1,1D (3) При повышении пенсии бабушке на 20%, месячный доход увеличится на 3200 руб или: х+у+(z+20%*z:100%)=D+3200 x+y+(z+0,2z)=D+3200 x+y+1,2z=D+3200 (4) Из четвёртого уравнения вычтем первое уравнение: x+y+1,2z-x-y-z=D+3200-D 0,2z=3200 z=3200 : 0,2 z=16000 (руб-пенсия бабушки)
Подставим значение (z) равное 16000 в первое, второе и третье уравнения, получим: х+у+16000=D (1) 1,2х+у+16000=1,06D (2) x+1,2y+16000=1,1D (3) Из второго уравнения вычтем первое уравнение: 1,2х+у+16000-х-у-16000=1,06D-D 0,2x=0,06D x=0,06D : 0,2 х=0,3D Из третьего уравнения вычтем первое уравнение: х+1,2у+16000-х-у-16000=1,1D-D 0,2y=0,1D y=0,1D : 0,2 у=0,5D Подставим найденные значения (х) и (у) в первое уравнение: 0,3D+0,5D+16000=D 0,3D+0,5D-D=-16000 -0,2D=-16000 D=-16000 : -0,2 D=80000 (руб) -месячный доход семьи
Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3.
Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π.
Это в том случае, если косинус х.( без скобок).