При делении на 7 возможные остатки: 0; 1; 2; 3; 4; 5; 6; (всего 7 вариантов) число, кратное 5, оканчивается цифрами 0 или 5, число, дающее при делении на 5 остаток 2, оканчивается на 2 или на 7, т.е. х = А + 2 или х = В + 7; А,В∈Z этого вида числа при делении на 7 могут дать остатки: 2:7 (остаток 2) 7:7 (остаток 0) 12:7 (остаток 5) 17:7 (остаток 3) 22:7 (остаток 1) 27:7 (остаток 6) 32:7 (остаток 4) 37:7 (остаток 2) 42:7 (остаток 0) 47:7 (остаток 5) 52:7 (остаток 3) 57:7 (остаток 1) 62:7 (остаток 6) 67:7 (остаток 4) далее история повторяется... осталось рассмотреть только два варианта: 32; 102; 172; 242...(3+7n)*10+2... при делении на 35 дают остаток 32 30+70n+2 = 70n+32 = 35*2n+32 67; 137; 207; 277...(6+7n)*10+7... при делении на 35 дают остаток 32 60+70n+7 = 70n+67 = 35*2n+35+32 = 35*(2n+1) + 32
При делении на 7 возможные остатки: 0; 1; 2; 3; 4; 5; 6; (всего 7 вариантов) число, кратное 5, оканчивается цифрами 0 или 5, число, дающее при делении на 5 остаток 2, оканчивается на 2 или на 7, т.е. х = А + 2 или х = В + 7; А,В∈Z этого вида числа при делении на 7 могут дать остатки: 2:7 (остаток 2) 7:7 (остаток 0) 12:7 (остаток 5) 17:7 (остаток 3) 22:7 (остаток 1) 27:7 (остаток 6) 32:7 (остаток 4) 37:7 (остаток 2) 42:7 (остаток 0) 47:7 (остаток 5) 52:7 (остаток 3) 57:7 (остаток 1) 62:7 (остаток 6) 67:7 (остаток 4) далее история повторяется... осталось рассмотреть только два варианта: 32; 102; 172; 242...(3+7n)*10+2... при делении на 35 дают остаток 32 30+70n+2 = 70n+32 = 35*2n+32 67; 137; 207; 277...(6+7n)*10+7... при делении на 35 дают остаток 32 60+70n+7 = 70n+67 = 35*2n+35+32 = 35*(2n+1) + 32
1)(4х)^2+2×4×у+у^2 = 16х^2+8у+у^2
2)(2а)^2+2×2а×3в+(3в)^2 = 4а^2+12ав+9в^2
3)5^2+2×5×6m+(6m)^2 = 25+60m+36m^2
4)x^2+2×x×2y+(2y)^2 = x^2+4xy+4y^2
5)(8x)^2+2×8x×3+3^2=64x^2+48x+9
6)(10x)^2-2×10x×7y+(7y)^2 = 100x-140xy+49y^2