Графически это выглядит следующим образом (см. вложение). Нам нужна площадь области, выделенной красным цветом (честно говоря, полчаса соображал, как это сделать в программе, чтобы она меня поняла)).
Алгоритм такой: 0. Обе параболы поднимаются на 1 единицу вверх, чтобы мы могли вычислить определённый интеграл (он ограничен осью x). Площадь фигуры при этом не изменится, так что всё нормально. 1. Вычисляется площадь фигуры под ; 2. Теперь — под ; 3. Разность площадей и будет искомой фигурой.
По дороге ещё придётся найти нули функции, т. к. для определённого интеграла нужна область вычисления.
Поехали.
1)
2)
3) (кв. ед.)
Вроде бы так... :) Попробую сейчас проверить решение.
Пусть собственная скорость теплохода (скорость в неподвижной воде) равна х, тогда по течению х+4, против течения - х-4. Всего с начала до конца пути часов, из которых в пути он было 18-5=13 часов. Мы знаем расстояние - 165 км - которое теплоход, и две его скорости, а так же общее время, поэтому можем составить уравнение:
Теперь мы домножаем обе части уравнения на знаменатели, и получаем следующее уравнение:
Раскрываем скобки, переносим всё одну сторону, получаем квадратное уравнение:
Решаем его и получаем значения х:
В данном случае скорость не может быть отрицательной, поэтому х=26.
А) -1<-0.79<0
B) -6<-5.13<-5
C) 1<1.25<2
D) 13<13.95<14