наименьшее общее кратное (НОК) : НОК натуральных чисел a и b называю наименьшее натуральное число, которое кратно и a, и b. (Иными словами если это число делить на a или b, то ответ будет целое число). Решают так: 1) разложим числа на простые множители: 18 = 2 Х 3 Х 3 45 = 3 Х 3 Х 5 2) выпишем множители входящие в разложение одного из чисел ну без разницы, например: 3 Х 3 Х 5 3) добавить к ним недостающие множители из разложения остальных чисел (просто НОК можно искать для двух, трех и более чисел) так, чего нам не хваает? а! одной двойки, получим НОК (18, 45) = 3 Х 3 Х 5 х 2 = 90 30 = 2 Х 3 Х 5 40 = 2 Х 2 Х 2 Х 5 НОК (30, 40) = 2 Х 2 Х 2 Х 5 Х 3 = 120 210 = 2 Х 3 Х 5 Х 7 350 = 2 Х 5 Х 5 Х 7 НОК (210, 350) = 2 Х 5 Х 5 Х 7 Х 3 = 1050 20 = 2 Х 2 Х 5 70 = 2 Х 5 Х 7 15 = 3 Х 5 НОК (20, 70, 15) = 2 Х 2 Х 5 Х 7 Х 3 = 420
V 60 - ( V 3 + V5) ^2 =
1) (V3 + V5)^2 = 3 + 2*V3*V5 + 5 = 8 + 2*V15 = 8 + V (15*4) = 8 + V 60
2) V 60 - (8 + V 60) = V 60 - 8 - V 60 = - 8
ОТВЕТ: минус восемь