См. рисунок. Схематично изобразила параболу. Так как в условии сказано, что корней 2, то дискриминант квадратного трехчлена должен быть положительным D= (3a-3)²-4·(2a²-2a-4)=9a²-18a+9-8a²+8a+16=a²-10a+25=(a-5)²>0 при а≠5 По схематичному графику понимаем, что значение функции в точке 1 отрицательно, в точке 2 положительно, в 0 отрицательно f(x) =x²+(3a-3)x+2a²-2a-4 f(0)=2a²-2a-4 ⇒ 2a²-2a-4<0 ⇒а∈(-1;2) f(1)=1+3a-3+2a²-2a-4 ⇒ 2a²+a - 6 <0⇒а∈(-2;3/2) f(2)=4+(3а-3)·2+2а²-2а-4 ⇒ 2а²+4а-6>0⇒а∈(-∞;-3)U(1;+∞) Все эти услдовия должны выполняться одновременно, поэтому решением системы трех неравенств будет интервал (1;3/2) ответ. при а∈(1; 1,5)
1. Площадь прямоугольника - 250 см² Одна сторона - 2,5а см² Вторая сторона - а см² 2,5а*а=250 (a>0) 2,5а²=250 a²=100 a=√100 a=10 (см) - вторая сторона прямоугольника 2,5а=2,5*10=25 (см) - первая сторона прямоугольника 25>10 ответ: Большая сторона прямоугольника равна 25 см
2. x²+15x+q=0 x₁-x₂=3 q=? Для решения задачи применяем теорему Виета. Составим систему(решаем методом сложения): {x₁+x₂=-15 {x₁-x₂=3 => 2x₁=-12 x₁=-6 -6+x₂=-15 x₂=-9 q=x₁*x₂=-6*(-9)=54 ответ: 54
n=5*k+3
n=11z+8
5k+3=11z+8
5k-11z=5
число 5к всегда оканчиваеться на 0 и 5
значит при 60-55 =5
значит k=12
z=5
и начше число равно 63
Значит при 63^2/55 остаток 9