Очевидно, что p и q - целые корни трехчлена. Пусть в силу симметрии задачи относительно p и q,возьмем p=p1 произвольно простым. Тогда по теореме разложения на множители: f(x)=(x-p1)*(x-q) F(11)=(11-p1)*(11-q)=p2 p2-простое. Тк p2 простое ,то 11-p1=+-1 либо 11-p1=+-p2 1) p1=12 или p1=10 ,невозможно Тк 10 и 12 не простые числа. 2) p1+-p2=11 Предположим, что простые числа p1 и p2 нечетные,тогда их сумма(разность) четное число,что невозможно,значит хотя бы одно из них четно,а значит равно 2. Положим что p1=2,тогда: +-p2=11-2=9 (невозможно),тк 9 число -составное. Значит p2=2 p1+-2=11 p1=13 или p1=9 (не подходит) Откуда: p1=p=13 ;p2=2 (11-p1)*(11-q)=2 -2*(11-q)=2 11-q=-1 q=10 p+q=13+10=23. ответ :23
См. рисунок
1. Правильный шестиугольник, состоит из шести равносторонних треугольников.
Найдем сторону шестиугольника AB=r=48/6=8м.
Рассмотрим ΔСDO в нем CD=DO=0,5a (где а - сторона квадрата) ⇒ a=2CD
По теореме Пифагора найдем СD
r²=CD²+DO²=2CD² ⇒ r=CD√2⇒
м
2. Из задачи №1. мы убедились, что радиус описанной окружности равен стороне правильного шестиугольника.
Площадь правильного шестиугольника равна
Длина окружности равна L=2πr=2π4√3=π*8√3≈43,5 см
3. Площадь сектора равна
(где n - градусная мера дуги сектора)