Пусть второй рабочий изготовил х деталей. Первый рабочий изготовил на 16% больше. Чтобы найти 16% от числа х, надо 16% перевести в десятичную дробь 0,16, а чтобы найти дробь от числах, надо это число х умножить на дробь 0,16. Значит, первый рабочий изготовил (х + 0,16х) деталей. Вместе оба рабочих изготовили (х + (х + 0,16х)) деталей или 86 деталей. Составим уравнение и решим его.
x + (x + 0,16x) = 86;
x + x + 0,16x = 86;
2,16x = 86;
x = 86 : 2,16;
x = 39,8=40 (деталей) – второй рабочий;
x + 0,16x = 1,16x = 40 * 1,16 = 46 (деталей) – первый рабочий.
ответ. 40 деталей; 46 деталей.
y` = 4x^3 +6x
y` = 3x^2-6x+1
y`= 6x+2
y`= 4x+ 1/ cos^2 x
y` = 5x^4-10x + cosx
y`= e^x + 1/x
y`= 1- 1/x
y`= -sinx +cos x
y`= 1/ (2*корень из х) - 1/ (х^2)
y`= 1/ (x ln 7) + 3
y`= 1/ (x ln 3) + 1/ (x ln 5)
y`= 5+2=7
y`= [(2x+5)(2-8x)+8(x^2+5x)] / (2-8x)^2 = (-8x^2+4x+10) / (2-8x)^2
y`= 6x
y`=9x^2-6
y`= cosx(1+cosx) - sinx(1+sinx)= cosx+cos^2 x-sinx-sin^2 x= cosx - sinx+ cos2x
y`= 1/( cos^2 x) - 2cosx
y`= 12x^2
y`= 12x^2-8
y`= 1/x * (x^2-1)+2x*lnx=(x^2-1) / x + 2x*lnx
y`= 4^x * ln4 * log4x + 4^x / (x*ln4)