1). R = 12 см
l = 2πR·α / 360°
1. l = 2π·12·36° / 360° = 24π/10 = 2,4π см
2. l = 2π·12·72° / 360° = 4,8π см
3. l = 2π·12·45° / 360° = 3π см
4. l = 2π·12·15° / 360° = π см
2) l = 2πR R = l / (2π)
S = πR² = πl² / (4π²) = l² / (4π)
1. l = 6π см
S = 36π² / (4π) = 9π см
2. l = 4π см
S = 16π² / (4π) = 4π см²
3. l = 10π см
S = 100π² / (4π) = 25π см²
4. l = 8π см
S = 64π² / (4π) = 16π см²
3)
а) R = 12 см,
l = πR·α / 180°
α = l · 180° / (πR)
1. l = 2π см
α = 2π · 180° / (12π) = 30°
2. l = 3π см
α = 3π · 180° / (12π) = 45°
б) R = 10 см,
Sсект = πR²·α / 360°
α = Sсект·360° / (πR²)
1. Sсект = 5π см²
α = 5π·360° / (100π) = 18°
2. Sсект = 10π см²
α = 10π·360° / (100π) = 36°
1. ∠1 и ∠3 смежные, значит ∠1 = 180° - ∠3 = 180° - 44° = 136°
∠1 и∠2 внутр. накрест лежащие углы, они равны между собой по 136° => a параллельно b
2. рассмотрим ΔABC и ΔADC.
они равны по 3 признаку, так как AC общая сторона, AD = BC и AB = CD
∠BCA = ∠DAC (как внутр. накрест лежащие углы), а из этого следует, что AD параллельно BC
3. обозначим на рисунке ∠4, ∠5, ∠6 и ∠7
∠7 = 180° - ∠3 = 180° - 41° = 139°, следовательно ∠7 = ∠3, значит a параллельно b
∠5 = ∠3 = 41° (как вертикальные)
∠4 = 180° - ∠1 = 180° - 160° = 20°
и ∠6 = 180° - ∠4 - ∠5 = 180° - 20° - 41° = 119°
следовательно угол, обозначенный как x, равен 180° - ∠6 = 180° - 119° = 61°