По условию задачи имеем две неизвестных переменных, переменная t=времени,пер-
еменная х=скорости течения реки.Составим систему линейных уравнений с двумя
переменными.
10t+xt=70 1 уравнение системы ,показывает сколько лодка по течению.
10t-xt=30 2 уравнение системы показывает сколько лодка против.
Решим систему уравнений сложения.xt и -xt противоположные числа при
сложении дают 0. Сложим почленно каждый член 1 ур с чл 2 ур получим
20t=100 выразим t, t=100:20=>t=5; Решим 2 уравнение с 1 переменной
10*5-5x=30,=>50-5x=30,=>-5х=30-50,=>-х=-20:5,=>-х=-4 значит х=4.
ответ:скорость течения реки равна 4 км/ч,а время 5 часам.
y=-2(x-1)^2
y=-2(x^2-2x+1)
y=-2x^2+4x-2
f(x)=-2x^2+4x-2
График - парабола, ветви вниз, т.к. коэффициент при x^2 отрицательный,
a=-2.
Точка вершины параболы (1;0): x=-b/2a=-4/2*-2=-4/-4=1;
y=-2*1+4*1-2=-4+4=0
Пересечение с осью У, при х=0: -2*0+4*0-2=-2 - точка пересечения (0;-2).
Точки пересечения с осью Х, при y=0:
-2x^2+4x-2=0 |2
-x^2+2x-1=0
D=2^2-4*(-1)*(-1)=0 Уравнение имеет один корень
х=(-2+0)/-2=1
График пересекается с осью Х в точке (1;0), т.е. вершина параболы лежит на оси 0Х.
График во вложении