Произведение двух множителей ≤0,тогда и только тогда, когда множители имеют разные знаки. Решаем две системы
решение системы предполагает рассмотрение двух случаев а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≥0; 5x-9>1; х²-4х+5≤1; х²-4х+5>0. Решение каждого неравенства системы: х≤20/11 х>1,8 х=2 х- любое О т в е т. 1а) система не имеет решений. б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≥0 0<5x-9<1 х²-4х+5≥1 х²-4х+5>0 Решение х≤20/11 0<х<1,8 х-любое (так как х²-4х+4≥0 при любом х) х- любое Решение системы 1б) 0<x<1,8, так как (20/11) >1,8 О т в е т. 1)0<x<1,8
решение системы также предполагает рассмотрение двух случаев а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≤0 5x-9>1 х²-4х+5≥1 х²-4х+5>0 Решение х≥20/11 х>1,8 х-любое х- любое О т в е т. 2 а) х≥20/11.
б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≤0 0<5x-9<1 х²-4х+5≤1 х²-4х+5>0 Решение х≥20/11 0<х<1,8 х=2 х- любое Решение системы 2б) нет решений О т в е т. 2) х≥20/11
О т в е т. 0 < x < 1,8 ; x≥20/11 или х∈(0;1,8)U(1целая 9/11;+∞)
2) Последовательность bn-геометрическая прогрессия. Найдите b7, если b4=20,q=0.3 b4=b1*0.3^3=20 b1*0/027=20 b1=20/0.03^3 b7=b1*q^6=20/0.3^3*0.3^6=20*0.3^3=0.54 3)Найдите номер члена геометрической прогрессии bn=972, b1=4 q=3 bn=b1*q^(n-1) 972=4*3^(n-1) 3^(n-1)=972/4=243=3^5 n-1=5 n=6 4) Найдите первый член и знаменатель геометрической прогрессии bn, если bn=5/3в степени n b2/b1=q (5/3)^2 : (5/3)=q q=5/3 b1=b1*q^(0) b1=(5/3)^1*1=5/3 b1=q=5/3 5)Найдите знаменатель геометрической прогрессии q, если b1+b4=54, b7+b4=2 Решение надо b1+b4=54 b7+b4=2 b1+b1q^3=54 b1q^6+b1q^3=2 b1(1+q^3)=54 b1q^3(1+q^3)=2 делим это на предыдущее q^3=2/54=1/27=1/3^3 q=1/3