переходи по ссылке там ответ
Ну или не переходи
Решите систему неравенств:
x²-3x+9>0
x²≤36
Решить первое неравенство:
x² - 3x + 9 > 0
Приравнять к нулю и решить квадратное уравнение:
x² - 3x + 9 = 0
D=b²-4ac =9 - 36 = -27
D < 0
Уравнение не имеет действительных корней.
Значит, неравенство выполняется всегда или не выполняется никогда.
Подставить в неравенство произвольное значение х:
х = 0;
0 - 0 + 6 > 0, выполняется.
Значит, неравенство верно при любом значении х.
Решение первого неравенства: х∈(-∞; +∞).
Решить второе неравенство:
x² ≤ 36
Приравнять к нулю и решить квадратное уравнение:
x² = 36 неполное квадратное уравнение
х = ±√36
х₁ = -6;
х₂ = 6.
Уравнение квадратичной функции, график - парабола, ветви направлены вверх, пересекают ось Ох в точках х= -6 и х= 6.
Решение второго неравенства: х∈[-6; 6].
Неравенство нестрогое, скобки квадратные.
Отметить на числовой оси интервалы решений двух неравенств и найти пересечение решений, это будет решение системы неравенств.
Пересечение решений: х∈[-6; 6].
Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х .
А за у дней может закончить Алиса, тогда еѐ производительность равна / у .
Т.к. они могут напечатать курсовую работу за 6 дней,
то /х + /у = 1/
Если сначала % = / части курсовой напечатает Катя,
а затем завершит работу Алиса, то Алисе остается
% = / части курсовой.
Вся курсовая работа будет выполнена за 12 дней т.е.
( /) х + (/ ) у = .
Решим систему:
/х + /у = / ,
(/) х + (/ ) у = .
+ = ,
+ = ;
у = − , ;
+ * ( − , ) = *( − , )
у = − , ;
, ² − + = ;
у = − , ;
² − + = ;
² − + = ;
= , у =
или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса.
Значит, Катя может напечатать курсовую работу за 10 дней.
ответ. за 10 дней
Объяснение: