Объяснение:
ДУМАЕМ Площадь фигуры - интеграл разности функций.
Рисунок к задаче в приложении.
РЕШЕНИЕ
1) Находим точки пересечение = пределы интегрирования.
x² - 4*x + 1 = x + 1 превращается в квадратное уравнение:
x²- 5*x = x*(x - 5) = 0
b= 0 - нижний предел и а = 5 - верхний передел интегрирования.
Находим интеграл разности функций: s = 5*x - x² - прямая выше параболы.
S=
Мне нравится именно такая запись решения интеграла - увеличиваем степень и на неё же и делим.
Вычисляем на границах интегрирования.
S(5) = 62 1/2 - 41 2/3 = 20 5/6, S(0) = 0.
S = S(5) - S(0) = 20 5/6 - площадь фигуры - ОТВЕТ (≈ 20,833)
Объяснение:
ДУМАЕМ Площадь фигуры - интеграл разности функций.
Рисунок к задаче в приложении.
РЕШЕНИЕ
1) Находим точки пересечение = пределы интегрирования.
x² - 4*x + 1 = x + 1 превращается в квадратное уравнение:
x²- 5*x = x*(x - 5) = 0
b= 0 - нижний предел и а = 5 - верхний передел интегрирования.
Находим интеграл разности функций: s = 5*x - x² - прямая выше параболы.
S=
Мне нравится именно такая запись решения интеграла - увеличиваем степень и на неё же и делим.
Вычисляем на границах интегрирования.
S(5) = 62 1/2 - 41 2/3 = 20 5/6, S(0) = 0.
S = S(5) - S(0) = 20 5/6 - площадь фигуры - ОТВЕТ (≈ 20,833)
Пусть скорость автомобиля из А равна х
Тогда скорость автомобиля из В равна 90-х.
Время первого 90:х
Время второго 90:(90-х)
Следует привести единицы измерения в соответствие ( расстояние дано в км, скорость выражаем в км/ч, время тоже нужно выразить в часах)
27 минут=27/60 часа=9/20 часа
По условию задачи время автомобиля из А больше на 9/20 часа
Составим уравнение:
90:х -90:(90-х)=9/20
Для удобства сократим обе части уравнения на 9:
10:х-10:(90-х)=1/20
После приведения к общему знаменателю и избавления от дробей получим:
20·10·(90-х)-20·10х=х(90-х)
18000-200х -200х=90х-х²
х²-90х-400х+18000=0
х²-490 х+18000=0
Решив квадратное уравнение, получим два корня:
х1=450 (не подходит)
х2=40
Скорость автомобиля из А равна 40км/ч
Скорость автомобиля из В равна 90-40=50 км/ч