Пусть скорость на второй половине пути х, тогда на первой половине пути х+3.Время первой половины пути: 45/(х+3), время второй половины пути: 45/х. Составим и решим уравнение: 45/(х+3) + 45 /х = 5,5, ПРиведём к общему знаменателю: 45х + 45х + 135 = 5,5х²+16,5х -5,5х²+ 73,5х + 135 =0, умножим на (-2) 11х² - 147х - 270 = 0, D = 147²-4*11*(-270) = 33489= 183² х=- 18/11 - не подходит по условию задачи. х = 15. Итак, скорость на второй половине равна 15 км/ч.
{a1+ a6=11 a2+a4=10 Выразим а2, а4 , а6 через первый член арифметической прогрессии и разность прогрессии (d) a2=a1+d a4=a1+3d a6=a1+5d и подставим в систему: {a1+a1+5d=11 a1+d+a1+3d=10 {2a1+5d=11 2a1+4d=10 Решим систему методом сложения. Умножим первое уравнение на (-1) и сложим со вторым: {-2a1-5d=-11 + 2a1+4d=10 -d=-1 d=1 2a1+4=10 a1=3 (подставили найденное значение d во второе уравнение системы и нашли первый член прогрессии.) По формуле суммы n-первых членов прогрессии найдём сумму первых шести членов этой прогрессии: S6=(2·3+5 )\2·6=33 (Sn=(2a1+d(n-1))\2·n) ответ:33
sinA=BC/AB => AB=BC/sinA=6/0.6=10
AC=√AB^2-BC^2=√100-36=8
sinA=CH/AC => CH=AC*sinA=8*0.6=4.8