Обозначим длины сторон прямоугольника через х и у.
Согласно условию задачи, площадь данного прямоугольника равна 72 см², следовательно, имеет место следующее соотношение:
х * у = 72.
Также известно, что периметр данного прямоугольника равен 36 см, , следовательно, имеет место следующее соотношение:
2 * (х + у) = 36.
Упрощая данное соотношение, получаем:
х + у = 36 / 2;
х + у = 18;
х = 18 - у.
Подставляя полученное значение для х в соотношение х * у = 72, получаем:
(18 - у) * у = 72.
Решаем полученное уравнение:
18у - у² = 72;
у² - 18у + 72 = 0;
у = 9 ± √(81 - 72) = 9 ± √9 = 9 ± 3.
у1 = 9 - 3 = 6;
у2 = 9 + 3 = 12.
Зная у, находим х:
х1 = 18 - у1 = 18 - 6 = 12;
х2 = 18 - у2 = 18 - 12 = 6.
ответ: стороны данного прямоугольника равны 6 см и 12 см.
а) х2+5х-14=(х-2)(х+7);
х2+5х-14=0;
д=25-4*(-14)=25+56=81;
х1=(-5+9)/2=4/2=2;
х2=(-5-9)/2=-14/2=-7;
б)16х2-14х+3=16(х-0,5)(х-0,375);
16х2-14х+3=0
д=(-14)2-4*16*3=196-192=4;
х1=(14+2)/32=16/32=0,5;
х2=(14-2)/32=12/32=0,375;
в)(3у2-7у-6)/(4-9у2)=3(у-3)(у+2/3)/-9(у-2/3)(у+2/3)=3(у-3)/(6-9у)=
(3у-9)/(6-9у)=3(у-3)/3(2-3у)=(у-3)/(2-3у);
3у2-7у-6=(у-3)(у+2/3);
3у2-7у-6=0
д=49-4*3*(-6)=49+72=121;
у1=(7+11)/6=18/6=3;
у2=(7-11)/6=-4/6=-2/3;
4-9у2=-9(у-2/3)(у+2/3);
4-9у2=0
9у2=4
у1=4/9=2/3;
у2=-2/3.