ax² + bx + c = 0 - квадратное уравнение (a ≠ 0), называется неполным, если b = 0, или c = 0, или оба сразу (b = 0 и c = 0). Разберем все эти случаи.
1) b = 0 и c ≠ 0
ax² + c = 0
ax² = -c
x² = -c / a
x² ≥ 0, поэтому для того, чтобы уравнение не имело корней достаточно -c / a < 0; c / a > 0 - получили ответ на первый вопрос
2) b ≠ 0; c = 0
ax² + bx = 0
x·(ax + b) = 0
x₁ = 0; x₂ = -b / a
То есть корни будут всегда, и мы получили ответ на второй вопрос задачи:
(при b ≠ 0; c = 0; Уравнение ax² + bx = 0 имеет 2 корня, один из которых 0)
3) b = 0 и c = 0
ax² = 0
x = 0, то есть всегда корнем будет 0
Объяснение:
Так как х1 и х2 - его корни, то по Теореме Виета: х1+х2=-р и х1х2=q
Уравнение x^2-p^2x+pq=0:
Так как (х1+1) и (х2+1) - его корни, то по Теореме Виета: х1+1+x2+1=p^2 и (x1+1)(x2+1)=pq
Имеем систему с четырьмя уравнениями и четырьями неизвестными:
{x1+x2=-p
{x1x2=q
{x1+x2+2=p^2 => x1+x2=p^2-2
{(x1+1)(x2+1)=pq
(x1+1)(x2+1)=pq
x1x2+x1+x2+1=pq
x1x2+(x1+x2)=pq-1
Подставляем значения x1x2=q и (x1+x2)=-p
{-p=p^2-2 (1)
{q-p=pq-1 (2)
(1) -p=p^2-2
p^2+p-2=0
[p=1
[p=-2
(2) p=1 : q-1=q-1 => q - любое действительное число
p=-2 : q+2=-2q-1; 3q=-3; q=-1
ответ: p=1 и q=любое действительное число; p=-2 и q=-1