ответ: x1=1 ; y1=2
x1=-1 ; y1=-2
Объяснение:
Сразу покажу , что y не равно 0.
Действительно ,если подставить y=0 в первое уравнение получим:
x^2=-9 , что невозможно.
Умножим первое уравнение на -7 ,а второе на 9 :
-7x^2-7xy+21y^2=63
9x^2-9y^2-18xy=-63
Сложим оба уравнения:
2x^2-25xy+12y^2=0
Поскольку ранее было оговорено , что y не равен 0, то можно поделить обе части уравнения на y^2:
2* (x/y)^2 -25*(x/y) +12=0
Замена: x/y=t
2t^2-25t+12=0 ( делим на 2)
t^2-(12+ 1/2)*t +6=0
Откуда по теореме Виета:
t1=12 ( x=12y)
t2=1/2 ( y=2x)
1) x=12y
Подставляем в уравнение 1:
144y^2+12y^2-3y^2=-9
153*y^2=-9 (решений нет)
2) (y=2x)
x^2+2x^2-12x^2=-9
-9x^2=-9
x^2=1
x12=+-1
y12=+-2
Объяснение:
Задание 2.
а) Координату х=5 будут иметь все точки , лежащие на прямой , которая параллельна оси ординат и проходит через т.А на оси абсцисс. Любая другая точка координатной плоскости имеет абсциссу отличную от х=5
б) Координату у=-3 будут иметь все точки , лежащие на прямой , которая параллельна оси абсцисс и проходит через т.С на оси ординат. Любая другая точка координатной плоскости имеет ординату отличную от у=-3
рисунок 1 во вложении
Задание 3.
а) На координатной плоскости неравенство х ≥ 4 задаст полуплоскость , которая будет расположена правее прямой х=4. Все точки этой полуплоскости будут иметь абсциссу равную 4 и больше
рисунок 2 во вложении
б) Двойное неравенство 0 ≤ у ≤ 5 задает на координатной плоскости две горизонтальные полосы , которые имееют ординату 0 и 5
рисунок 3 во вложении
Задание 4.
а) у = х;
найдем точки и построим график
х=0, у=0
х=3 , у=3
х=-3, у= -3
б) –3 ≤ х ≤ 3.
неравенство задает на координатной плоскости две вертикальные полосы, которые имею абсциссу 3 и -3
Изобразим множество точек на координатной плоскости
рисунок 4 во вложении
Задание 5
Решение во вложении
Задание 6
Если | x | ≤ 5 , значит -5 ≤ х ≤ 5, т.е. х ϵ [-5 ; 5]
Отметим этот промежуток т.А и т.В на координатной прямой ( рис. 5 во вложении)
Отметим промежуток –7 ≤ x ≤ 1 , т.е. х ϵ [ -7 ; 1] на координатной прямой т.С и т. D
Для того, чтобы определить границы промежутков [-5; 5] и [-7; 1] сравним левые и правые границы этих промежутков. Поскольку -7 < -5, а 5 >1 , то искомое пересечение имеет вид: х ϵ[-5; 1]