Определим делимое число без остатка 2015 - 215 = 1800 , тогда можно записать 2015 : n = (1800 + 215) : n Таким образом нужно найти натурально число n > 215 на которое делится число 1800, для этого разложим число 1800 на множители 1) 1800 = 2*900 2) 1800 = 3*600 3) 1800 = 4*450 4) 1800 = 5*360 5) 1800 = 6*300 6) 1800 = 8*225
Таким образом получаем все варианты деления числа 2015 на следующее натурально число n: 1) 2015 : 900 = 2 целых 215 остаток 2) 2015 : 600 = 3 целых 215 остаток 3) 2015 : 450 = 4 целых 215 остаток 4) 2015 : 360 = 5 целых 215 остаток 5) 2015 : 300 = 6 целых 215 остаток 6) 2015 : 225 = 8 целых 215 остаток
если b[1], b[2], b[3], .. - данная бесконечная убывающая геомметрическая прогрессия с знаменателем q, то
последовательность составленная из квадратов членов данной, тоже бессконечная убывающая c первым членом b[1] и знаменателем q^2
используя формулу суммы бесконечной убывающей прогрессии
b[1]/(1-q)=4
b[1]^2/(1-q^2)=48
откуда разделив соотвественно левые и правые части равенств, и используя формулу разности квадратов
b[1]^2/(1-q^2) :b[1]/(1-q)=48/4
b[1]/(1+q)=12
откуда
b[1]=12(1+q)=4(1-q)
12+12q=4-4q
12q+4q=4-12
16q=-8
q=-1/2
b[1]=4*(1-(-1/2))=4+2=6