1) 10a + b = 10b + a + 36 9a = 9b + 36 a = b + 4 Остаток от деления равен 36, значит, делитель больше 36. Возможные значения b: b = 3; 4; 5 Соответствующие им значения а: a = 7; 8; 9 ответ: 7 + 8 + 9 = 24.
2) Если дробь правильная, то 10a+b < 10b+a; значит a < b. Так как b = 1; 2; 3; 4; то a = 1; 2; 3 12/21; 13/31; 23/32; 14/41; 24/42; 34/43 ответ: Всего 6 дробей
3) Начинаем с 1. Сначала прибавляем 3, получаем 4, потом умножаем на 3, получаем 12. Дальше опять прибавляем 3 и умножаем на 3. Следующее число будет 48*3 = 144.
1. Найдём производную функции . Она равна 2х-2 найдём стационарные точки 2х-2=0 х=1 Найдём значения функции на концах отрезка и в стационарной точке у(-2)=(-2)²-2*(-2)+3=21 у(-1)=(-1)²-2*(-1)+3=6 точка х=1 не входит в заданный отрезок , значит наименьшее значение у=6 2)у=-х²-4х+5 производная равна -2х-4 -2х-4=0 х=-2 стационарная точка не входит в заданный отрезок. Значит проверяем только на концах отрезка у(-1)=-(-1)²-4*(-1)+5=10 у(0)=-0²-4*0+5=5 Наибольшее значение функции у=10 3)у=2х²-4х+1 Производная равна 4х-4, 4х-4=0, х=1 1 входит в заданный отрезок, значит ищем значения функции в трёх точках у(-1)=2(-1)²-4*(-1)+1=7 у(1)=2(-1)²-4*1+1=-1 у(2)=2*2²-4*2+1=1 Наименьшее значение у=-1 4)у=-3х²+12х-8 Производная равна -6х+12 -6х+12=0 х=2 2 входит в отрезок, значит ищем значения функции в трёх точках у(0)=-3*0²+12*0-8=-8 у(2)=-3*2²+12*2-8=4 у(4)=-3*4²+12*4-8=-8 Наименьшее значение функция достигает в двух точках и равно у=-8
Замечание: отрезки обозначаются не круглыми , а квадратными скобками. У Вас интервалы. Если рассматривать интервалы, то решение будет другим. Так у Вас отрезки или интервалы?
Объяснение:
формула линейной функции у=kx+b
график проходит через точки (0;1) и (1;-1)
подставим координаты этих точек в уравнение и найдем к и b
1=0+b b=1
-1=k+b -1=k+1 k=-2
b=1 k=-2 подставим в уравнение у=kx+b
у=-2х+1