Пусть СЕ =х , тогда ВЕ= 32-х, АД= 16-х ВД= 24-(16-х) = 8+х. Треугольники ВДЕ и АВС подобны по двум углам ( угол в -общий , угол ВЕД= углу С как соответственные при параллельных ДЕ И АС и секущей ВС) Значит ВД/ ВА = ВЕ/ВС тоесть (8+х) : 24= (32-х) :4 , решаем эту пропорцию (8+х)* 32= (32-х)* 24
( 8+х)* 4= (32-х)* 3
32 +4х= 96 -3х
7х=64
х= 9 целых 1/7
ВД= 8+9 целых 1/7= 17 целых 1/7
Также пропорциональны стороны ВД : АВ= ДЕ : АС подстави данные 17 целых 1/7 : 24= ДЕ : 28, ДЕ = 17 целых 1/7 * 28 :24 = 20 см
ответ 20см
Объяснение:
x²-y²=24
x+y=4
(x-y)(x+y)=24
x+y=4 подставим в первое уравнение
4(x-y)=24
x+y=4
x-y=6 x=6+y подставим во второе уравнение
x+y=4 6+у+у=4 ; 2y=-2 ; y=-2/2=-1 ; x=6+y=6-1=5
x=5 y=-1