1. Дана функция f (x) = x ^ 3 - 8x ^ 2 + 20x. а) найти точки экстремума функции и определить их тип; ) найти увеличение и уменьшение функции; c) Нарисуйте график функции f (x) в сетке ниже.
1) По условию на первом месте стоит число 7 Найдём несколько следующих чисел данной последовательности, чтобы найти закономерность. 2) 7²=49; 4+9=13; 13+1=14 На втором месте стоит число 14 3) 14²=196; 1+9+6=16; 16+1=17 На третьем месте стоит число 17 4) 17²=289; 2+8+9=19; 19+1=20 На четвёртом месте стоит число 20 5) 20²=400; 4+0+0=4; 4+1=5 На пятом месте стоит число 5 6) 5²=25; 2+5=7; 7+1=8 На шестом месте стоит число 8 7) 8²=64; 6+4=10; 10+1=11 На седьмом месте стоит число 11 8) 11²=121; 1+2+1=4; 4+1=5 На восьмом месте стоит число 5 Получается, что теперь члены последовательности будут повторяться: 5; 8; 11; 5; 8; 11... Получается последовательность: 7; 14; 17; 20; 5; 8; 11; 5; 8; 11... Подсчитаем, какое число будет стоять на 2017 месте. Вычтем 4 первых члена, которые не повторяются: 2017 - 4 = 2013 Число 2013 делится без остатка на 3 2013 : 3 = 671 Следовательно, после четырёх первых членов 7; 14; 17; 20 будет 671 раз повторяться тройка чисел 5; 8; 11. Значит, последним будет число 11.
1) y=sin x, y=cos x, x=-5π/4, x=π/4. Заданный отрезок графиками функций разбивается на 2 участка: левая часть - от заданного предела x=-5π/4 до точки встречи графиков, где график функции синуса выше графика косинуса. Направо от этой точки график синуса выше графика косинуса. Это определяет площадь как сумма интегралов разностей функций. Точка встречи - это значение (-π+(π/4)) = -3π/4. . Значения аргумента в заданных пределах: -1.25π = -3.92699, -0.75π = -2.35619, 0.25π = 0.785398. Значения функции синуса в заданных пределах: 0.707107, -0.70711, 0.707107. (это +-√2/2) Значения функции косинуса в заданных пределах: -0.70711, -0.70711, 0.707107. (это +-√2/2) Значения функции косинуса в заданных пределах: Площадь равна 1.414214 + 2.828427 = 4.242641 = 3√2.
2) y=-x^2-2x+4, y=-x^2+4x+1, y=5. Заданный отрезок графиками функций разбивается на 2 участка, граничные точки которых надо определить. Средняя точка - равенство функций y=-x^2-2x+4, y=-x^2+4x+1. -x^2 - 2x + 4 = -x^2 + 4x + 1, 6х = 3, х = 3/6 = 1/2. Левая точка - равенство y=-x^2-2x+4, y=5 -x^2 - 2x + 4 = 5. -x^2 - 2x -1 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-2)^2-4*(-1)*(-1)=4-4*(-1)*(-1)=4-(-4)*(-1)=4-(-4*(-1))=4-(-(-4))=4-4=0; Дискриминант равен 0, уравнение имеет 1 корень: x=-(-2/(2*(-1)))=-(-2/(-2))=-(-(-2/2))=-(-(-1))=-1. Правая точка - равенство y=-x^2+4x+1, y=5. -x^2 + 4x + 1 = 5. -x^2 + 4x - 4 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=4^2-4*(-1)*(-4)=16-4*(-1)*(-4)=16-(-4)*(-4)=16-(-4*(-4))=16-(-(-4*4))=16-(-(-16))=16-16=0; Дискриминант равен 0, уравнение имеет 1 корень: x=-4/(2*(-1))=-4/(-2)=-(-4/2)=-(-2)=2. Линия у = 5 находится выше парабол. Площадь равна:
Найдём несколько следующих чисел данной последовательности, чтобы найти закономерность.
2) 7²=49; 4+9=13; 13+1=14
На втором месте стоит число 14
3) 14²=196; 1+9+6=16; 16+1=17
На третьем месте стоит число 17
4) 17²=289; 2+8+9=19; 19+1=20
На четвёртом месте стоит число 20
5) 20²=400; 4+0+0=4; 4+1=5
На пятом месте стоит число 5
6) 5²=25; 2+5=7; 7+1=8
На шестом месте стоит число 8
7) 8²=64; 6+4=10; 10+1=11
На седьмом месте стоит число 11
8) 11²=121; 1+2+1=4; 4+1=5
На восьмом месте стоит число 5
Получается, что теперь члены последовательности будут повторяться:
5; 8; 11; 5; 8; 11...
Получается последовательность:
7; 14; 17; 20; 5; 8; 11; 5; 8; 11...
Подсчитаем, какое число будет стоять на 2017 месте.
Вычтем 4 первых члена, которые не повторяются:
2017 - 4 = 2013
Число 2013 делится без остатка на 3
2013 : 3 = 671
Следовательно, после четырёх первых членов 7; 14; 17; 20 будет 671 раз повторяться тройка чисел 5; 8; 11. Значит, последним будет число 11.