Y=x^2 y`=2x уравнение касательной (у-y0)/(x-x0)=2x1 точку касания найдем так (x1^2-y0)/(х1-x0)=2x1 (x1^2-y0)=2(х1-x0)x1x1^2-y0=2х1^2-2x0x1х1^2-2x0x1+y0=0х1^2+20x1-69=0 x1=3 или x1=-23 уравнение касательной (у+69)/(x+10)=6 или (у+69)/(x+10)=-46 у=6(x+10)-69 или у=-46(x+10)-69 у=6x-9 или у=-46x-529 - это ответ
2. На отрезке [ π ; 1,5π ] задана функция f(x)=2*sin^2x +√3*sin2x. К ее графику проведена касательная, параллельная прямой y=4x+1. Найдите координаты точки касания.
y=x^2 y`=2x уравнение касательной (у-y0)/(x-x0)=2x1 точку касания найдем так (x1^2-y0)/(х1-x0)=2x1 (x1^2-y0)=2(х1-x0)x1x1^2-y0=2х1^2-2x0x1х1^2-2x0x1+y0=0х1^2+20x1-69=0 x1=3 или x1=-23 уравнение касательной (у+69)/(x+10)=6 или (у+69)/(x+10)=-46 у=6(x+10)-69 или у=-46(x+10)-69 у=6x-9 или у=-46x-529 - это ответ
2. На отрезке [ π ; 1,5π ] задана функция f(x)=2*sin^2x +√3*sin2x. К ее графику проведена касательная, параллельная прямой y=4x+1. Найдите координаты точки касания.
y=x^2 y`=2x уравнение касательной (у-y0)/(x-x0)=2x1 точку касания найдем так (x1^2-y0)/(х1-x0)=2x1 (x1^2-y0)=2(х1-x0)x1x1^2-y0=2х1^2-2x0x1х1^2-2x0x1+y0=0х1^2+20x1-69=0 x1=3 или x1=-23 уравнение касательной (у+69)/(x+10)=6 или (у+69)/(x+10)=-46 у=6(x+10)-69 или у=-46(x+10)-69 у=6x-9 или у=-46x-529 - это ответ
2. На отрезке [ π ; 1,5π ] задана функция f(x)=2*sin^2x +√3*sin2x. К ее графику проведена касательная, параллельная прямой y=4x+1. Найдите координаты точки касания.
1) sin(a-b)+cos a*sin b =sina*cosb - cosa*sin b+cos a*sin b=sin a*cos b
2) cos(пи/2 - t)*ctg(-t)/sin (пи/2+t) = - sin t *ctg t/cos t =(-sint*cost/sint)/cost =
= -cost/cost = -1
3) ctg(-t)*sin t +cos(пи + t)=-cost/sint*sin t -cost =-cost-cost=-2cost