Разделим второе уравнение на 2 для удобства вычислений:
12х-3у=5
3у-12х= -5
Преобразуем уравнения в уравнения функций:
12х-3у=5 3у-12х= -5
-3у=5-12х 3у=12х-5
3у=12х-5 у=(12х-5)/3
у=(12х-5)/3
Без построения видно, что система уравнений имеет бесконечно много решений, так как графики функций полностью совпадают. Практически, это одна и та же функция.
ответ:Пусть A1 — центр вписанной окружности ∆ SBC, B1 — центр вписанной окружности ∆ SAC, AA1 пересекается с A, A1, B1, B лежат в одной плоскости, значит прямые AB1 и BA1 пересекаются на ребре SC. Пусть точка пересечения этих прямых — p. Так как Ap и Bp — биссектрисы углов A и B, то . Но тогда AC • BS = BC • AS, отсюда , следовательно биссектрисы углов S в ∆ ASB и C в ∆ ACB пересекаются на ребре AB, т.е. точки S, C и центры вписанных окружностей ∆ ASB и ∆ ACB лежат в одной плоскости. Отсюда следует, что отрезки, соединяющие вершины S и C с центрами вписанных окружностей противолежащих граней, пересекаются.
Система уравнений имеет бесконечно много решений.
Объяснение:
Выяснить, имеет ли система решений и сколько:
12х-3у=5
6у-24х=-10
Разделим второе уравнение на 2 для удобства вычислений:
12х-3у=5
3у-12х= -5
Преобразуем уравнения в уравнения функций:
12х-3у=5 3у-12х= -5
-3у=5-12х 3у=12х-5
3у=12х-5 у=(12х-5)/3
у=(12х-5)/3
Без построения видно, что система уравнений имеет бесконечно много решений, так как графики функций полностью совпадают. Практически, это одна и та же функция.