Решение задачи:
1) Найдем одну из сторон для прямоугольника:
P = 2(a + b),
120 = 2 (a + b),
60 = a + b,
b = 60 - а.
2) Площадь:
S = ab = a * (60 - а) = 60a - а2,
S = 60a - а2, функция с одной неизвестной, а.
3) Применяем производную:
S' = (60a - а2)' = 60 - 2a, приравниваем S' = 0,
60 - 2a = 0,
2а = 60,
а = 60 : 2,
а = 30 - критическая точка, а максимум функции в этой точке:
S(30) = 60 * 30 - 302 = 1800 - 900 = 900;
b = 60 - а = 60 - 30 = 30.
Проверка: 120 = 2(30 + 30).
ответ: стороны прямоугольника должны быть по 30 м
Решение задачи:
1) Найдем одну из сторон для прямоугольника:
P = 2(a + b),
120 = 2 (a + b),
60 = a + b,
b = 60 - а.
2) Площадь:
S = ab = a * (60 - а) = 60a - а2,
S = 60a - а2, функция с одной неизвестной, а.
3) Применяем производную:
S' = (60a - а2)' = 60 - 2a, приравниваем S' = 0,
60 - 2a = 0,
2а = 60,
а = 60 : 2,
а = 30 - критическая точка, а максимум функции в этой точке:
S(30) = 60 * 30 - 302 = 1800 - 900 = 900;
b = 60 - а = 60 - 30 = 30.
Проверка: 120 = 2(30 + 30).
ответ: стороны прямоугольника должны быть по 30 м
x=5,1
2) 3x-(5-x)=1
3x-5+x=1
4x=6
x=0,375
3)5x-21,5=7x-3,5
-18=2x
x=-9
4)3x-45+30=12x
-9x=15
x=-3/5
5)0,4-(0,2x-3,2)=4,8
0,4-0,2x+3,2=4,8
0,2x=1,6
x=8