М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Arishonok333
Arishonok333
23.11.2020 20:03 •  Алгебра

Велосипедист ехал от станции до почты и вернулся обратно затратив на весь путь час.к почте он ехал со скоростью на 5 км/ч большей,чем обратно.расстояние от станции до почты 6 км. с какой скоростью ехал велосипедист к почте?

👇
Ответ:
aruukewa123
aruukewa123
23.11.2020
Скорость от почты до станции = х км/час
Скорость от станции до почты =(х+5) км/час
Время на весь путь равно сумме времени\frac{6}{x}+\frac{6}{x+5}=1\\\frac{6(x+5)+6x-x(x+5)}{x(x+5)}=0

x\ne 0, x\ne -5\\30+6x+6x-5x-x^2=0\\x^2-7x-30=0

x_1=10, x_2=-3
Отрицательное значение не подходит.
x=10, x+5=15
ответ: 15 км/час
4,6(44 оценок)
Ответ:
сойдет2
сойдет2
23.11.2020
Пусть скорость велосипедиста к станции равна х км/ч исходя из условия получаем:
\cfrac{6}{x}+\cfrac{6}{x+5}=1\\x=-3\\x=10
Скорость не может быть отрицательной в данном случае, получаем что к почте ехал со скоростью 15км/ч
ответ: 15км/ч
4,4(93 оценок)
Открыть все ответы
Ответ:
silinskay
silinskay
23.11.2020
Есть специальная формула, которая позволяет преобразовать бесконечную периодическую десятичную дробь в обыкновенную:

y+\frac{a-b}{\underbrace{99...9}\underbrace{00...0}},

где \underbrace{99...9}=k, a \underbrace{00...0}=m

Рассмотрим пример:

Дана бесконечная периодическая дробь 2,(25)

Итак, по формуле:

y - целая часть. У нас она равна 2

k- - количество цифр в периоде. У нас их 2

m- количество цифр до периода. У нас их 0

a-  все цифры, включая период, в виде натурального числа. У нас это 25

b- все цифры без периода в виде натурального числа. Их нет.

Итак, получаем:

y=2\\
k=2\\
m=0\\
a=25\\
b=0

Подставляем в формулу:

y+\frac{a-b}{\underbrace{99...9}\underbrace{00...0}}=2+ \frac{25-0}{99}=2 \frac{2\cdot99+25}{99}= \frac{223}{99}

Необходимо отметить, что  под k подставляется количество 9, а под m -количество нулей. У нас k=2, значит пишем две цифры 9, а m=0, значит, нулей не пишем вообще. Между  k\ u\ m не стоит знак умножения

*****************************************

0,41(6)

y=0\\
k=1\\
m=2\\
a=416\\
b=41

Подставляем:

y+\frac{a-b}{\underbrace{99...9}\underbrace{00...0}}=0+ \frac{416-41}{900}= \frac{375}{900}= \frac{375:75}{900:75} = \frac{5}{12}

***************************************

3,6(020)

y=3\\
k=3\\
m=1\\
a=6020\\
b=6


Подставляем в формулу:

y+\frac{a-b}{\underbrace{99...9}\underbrace{00...0}}=3+ \frac{6020-6}{9990}= 3\frac{6014}{9990} = \frac{35984(:2)}{9990(:2)}= \frac{17992}{4995}
4,7(49 оценок)
Ответ:
AlenaSmaychkov222
AlenaSmaychkov222
23.11.2020

∀a ∈ ℝ: {a} ∈ [0; 1) ⇒ {x} - 1 ∈ [-1; 0).

∀a ∈ ℝ: [a] ∈ ℤ ⇒ [x] + ... + [x²⁰⁰³] ∈ ℤ.

Но [x] + ... + [x²⁰⁰³] = {x} - 1. Значит, {x} - 1 ∈ ℤ ∩ [-1; 0), то есть {x} - 1 = -1, или {x} = 0 ⇔ x ∈ ℤ.

Теперь переформулируем задачу.

Найдите все целые решения уравнения x²⁰⁰³ + ... + x + 1 = 0.

По следствию из теоремы Безу целые корни многочлена должны являться делителями свободного члена. В нашем случае свободный член - 1. У него два делителя: 1 и -1. Очевидно, что 1²⁰⁰³ + ... + 1 + 1 ≠ 0, а (-1)²⁰⁰³ + ... + (-1) + 1 = 0. Значит, имеем корень, равный -1. Других целых решений, как оговаривалось ранее, нет.

ответ: x = -1.

4,7(92 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ