х должен быть больше 0.
Прологарифмируем обе части неравенства по основанию2:
Log (х в степени Log х по осн.2) по основанию 2 (меньше или равно) Log16 по основанию2.
Log х по основанию 2 * Log х по основанию 2 (меньше или равно) 4.
(Log х по основанию 2) в квадрате меньше или равно 4
Пусть Log х по основанию 2 = у
у в квадрате меньше или равно 4
у в квадрате - 4 меньше или равно 0. Решим это неравенство методом интервалов.
(у - 2)(у+2) меньше или равно 0. Отсюда у меньше или равно 2, но больше или равно -2.
Тогда Log х по основанию 2 меньше или равно 2, но больше или равно -2.
или log х по основанию 2 меньше или равно iog 4 по основанию 2, но больше или равно log 1/4 по основанию 2.
Отсюда х меньше или равно 4, но больше или равно 1/4. Удачи!
б)Перенесём правую часть уравнения влевую часть уравнения со знаком минус.Уравнение превратится изa*(a - 3) = 2*a - 6вa*(a - 3) + -2*a + 6 = 0Раскроем выражение в уравненииa*(a - 3) - 2*a + 6Получаем квадратное уравнение 2 6 + a - 3*a - 2*a = 0 Это уравнение вида a*x^2 + b*x + c.Квадратное уравнение можно решитьс дискриминанта.Корни квадратного уравнения: ___ - b ± \/ D a1, a2 = , 2*a где D = b^2 - 4*a*c - это дискриминант.Т.к.a = 1b = -5c = 6, тоD = b^2 - 4 * a * c = (-5)^2 - 4 * (1) * (6) = 1Т.к. D > 0, то уравнение имеет два корня.a1 = (-b + sqrt(D)) / (2*a)a2 = (-b - sqrt(D)) / (2*a)a1 = 3a2 = 2