М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sonyapanferova
sonyapanferova
25.04.2022 04:21 •  Алгебра

Запишите число 23 500 000 000 в стандартном виде! заранее огромное

👇
Ответ:
Eva06An
Eva06An
25.04.2022
23 500 000 000=2,35*10^10
4,8(15 оценок)
Ответ:
Xomawq
Xomawq
25.04.2022
23 500 000 000=2,35 *10 ^{10}
4,6(18 оценок)
Открыть все ответы
Ответ:
С3, неплохо
log(6-x, (x-6)^2/(x-2)) >= 2
ОДЗ: 
(x-6)^2/(x-2) >0 => (2;6) U (6;+oo)
 6-х =\= 1 => x=\=5
6-x>0 => (-oo;6)
общий промежуток: (2;5) U (5;6)
Пользуемся правилом разности логарифмов
log(6-x, (x-6)^2) - log(6-x, x-2) >=2
2log(6-x, |x-6|)-log(6-x, x-2)>=2
-log(6-x, x-2)>=0
log(6-x, x-2)<=0
1. 6-x C (0;1)
6-x>0 => 6<x
6-x<1 => x>5
общий промежуток (5;6)
меняем знак неравенства
x-2>=1
x>=3
общее решение (5;6)
2. 6-x C (1;+oo)
6-x>1 => x<5
x-2<=1
x<=3
общее решение (-oo;3]
С учетом ОДЗ
(2;3] U (5;6)

(x^2-x-14)/(x-4) + (x^2-8x+3)/(x-8) <= 2x+3
Здесь можно не побрезговать и тупо привести к общему знаменателю
(x^2-x-14)(x-8)+(x^2-8x+3)(x-4)-(2x-3)(x-4)(x-8) / (x-4)(x-8) <=0
После всех подсчетов остается
(x+4)/((x-4)(x-8))<=0
методом интервалов
x<=-4; x C (4;8)

объединяем два неравенства: (5;6)
ответ: (5;6)
4,8(46 оценок)
Ответ:
Foolrelax
Foolrelax
25.04.2022

1) проверяем условие при наименьшем возможном значении n.

n>5, значит проверяем условие при n=6

2^66^2 \\ 6436

Верно!

2) Сделаем предположение, что для всех n=k, k>5 верно неравенство:

2^kk^2

3) Тогда при n=k+1 должно выполняться неравенство:

2^{k+1}(k+1)^2

Вернемся к неравенству из второго пункта и домножим его на 2:

2^kk^2 \ |*2 \\ 2*2^k2k^2 \\ 2^{k+1}2k^2

Подставим 2k² в 3-й пункт и рассмотрим полученное неравенство:

2k^2(k+1)^2 \\ 2k^2k^2+2k+1 \\ k^2-2k-10 \\ \\ k^2-2k-1=0 \\ D=2^2+4*1=8=(2\sqrt{2})^2 \\ \\ k_{1,2}=\frac{2 \pm2\sqrt{2}}{2}=1 \pm \sqrt{2} \\ \\ +++(1-\sqrt{2})---(1+\sqrt{2})+++_k

по методу интервалов определяем, что неравенство k²-2k-1>0 выполняется при  k>1+√2, тогда при k>5 оно тоже выполняется (так как 5>1+√2)

Тогда обратным ходом получаем 2k²>k²+2k+1 при k>5 или 2k²>(k+1)² при k>5

Если 2^{k+1}2k^2, а 2k^2(k+1)^2 , при k>5

То есть, 2^{k+1}2k^2(k+1)^2 , при k>5, то по закону транзитивности:

2^{k+1}(k+1)^2 , при k>5 - ч.т.д

4,8(57 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ