Объяснение:
Сначала найдём вероятность обратного события, а именно "обе извлечённые детали — не стандартны".
Всего нестандартных деталей 10 - 8 = 2 штуки. Соответственно, есть только один извлечь именно их.
Всего же извлечь две детали из 10 будет 10!/(2!(10-2)!) = 10!/(2!8!) = 10*9/2 = 45.
Таким образом, вероятность события "обе извлечённые детали — не стандартны" составляет 1/45.
Тогда вероятность искомого события равна 1 - 1/45 = 44/45.
ответ: вероятность того, что среди наудачу извлечённых двух деталей будет хотя бы одна стандартная, составляет 44/45.
Объяснение:
Сначала найдём вероятность обратного события, а именно "обе извлечённые детали — не стандартны".
Всего нестандартных деталей 10 - 8 = 2 штуки. Соответственно, есть только один извлечь именно их.
Всего же извлечь две детали из 10 будет 10!/(2!(10-2)!) = 10!/(2!8!) = 10*9/2 = 45.
Таким образом, вероятность события "обе извлечённые детали — не стандартны" составляет 1/45.
Тогда вероятность искомого события равна 1 - 1/45 = 44/45.
ответ: вероятность того, что среди наудачу извлечённых двух деталей будет хотя бы одна стандартная, составляет 44/45.
(d−7)⋅(d+4)−(d+5)⋅(d−13)=d^2+4d-7d-28-(d^2-13d+5d-65)=d^2+4d-7d-28-d^2+13d-5d+65=5d+37,при d= -0,11
5*0,11+37=0,55+37=37,55