Порассуждаем.
Площадь ромба - это половина произведения его диагоналей. Произведение диагоналей вдвое больше: 96*2 = 192.
Диагонали ромба разбивают его площадь на 4 равных прямоугольных треугольника. Возьмём один такой треугольник. Сторона ромба - гипотенуза такого треугольника (стороны ромба равны). Значит, произведение катетов (катеты - половины диагоналей, так как в ромбе точкой пересечения диагонали разбиваются пополам) этого треугольника в 4 раза меньше произведения диагоналей: 192:4 = 48.
По условию, одна диагональ (а значит, и один из катетов нашего треугольника) в 3 раза больше другой. Значит, половина меньшей диагонали равна √48:3 = 4 см, а половина большей - 4*3 = 12 см.
Итак, у нас есть прямоугольный треугольник с катетами 4 см и 12 см, нужно найти его гипотенузу (напомним себе, что искомая гипотенуза есть сторона ромба). Воспользуемся теоремой Пифагора: 4² + 12² = 160, гипотенуза равна квадратному корню из суммы квадратов катетов: √160 = 4√10.
Таким образом, сторона ромба равна 4√10. Ромб - параллелограмм с равными сторонами, следовательно, все стороны ромба равны друг другу и составляют длину в 4√10 см.
ответ: 4√10 см.
1)
.
ответ: В.
2)
ответ: А.
3)
ответ: Г.
4)
ответ: А.
5)
ответ: А.
6)
Для начала решим систему неравенств, определяющую область допустимых значений :
Возводим обе части уравнения в квадрат.
По теореме Виета:
3 не подходит под область допустимых значений.
ответ: корень только один, и он положительный.
7)
, тогда корень принадлежит промежутку
.
ответ: .
8)
Областью определения функции является решение следующего неравенства:
Так как основание меньше единицы, то:
ответ: .
9)
Найдём область значения функции. , тогда
. Значит,
. Следовательно, из перечисленных чисел в множество значений входит только 5 (4 не входит, так как концы не включаем).
ответ: 5.
10)
Условие чётности функции: . Проверяем для каждой.
- не подходит.
- не подходит.
- подходит.
ответ: .
Объяснение:
------------------------------