что
что бы узнать ответ . нужно сложить количество обуви каждого размера .
3+6+5+4+7=25
Объяснение:
D)25
F'(x) = f(x)
((x-1)²)' = 2(x-1)
Первообразная F(x) = (x-1)²+c - общий вид
у=2(х-1) = 2х-2 - график прямая
1. чертим систему координат; отмечаем начало координат - точку О (0; 0), отмечаем стрелками положительное направление: вправо и вверх; подписываем оси : вправо - х, вверх - у; отмечаем единичные отрезки по каждой оси в 1 клетку.
2) для построения прямой достаточно двух точек, занесем их координату в таблицу:
х= 0 2
у= -2 2
3) отметим точки (0; -2) и (2; 2) на координатной плоскости; проведем через данные точки прямую линию; подпишем график функции у= 2х-2
Всё!
a) x∈ (-∞;3)
b) x∈ (-∞;0] ∪ [4;+∞)
c) x∈ (-∞;0)∪(0;2/3)
d) x∈ [-1/2;1) ∪ (1;+∞)
Объяснение:
a) f(x)=√(-x+3);
-x+3≥0; -x≥-3; x≤3.
ОО: x∈(-∞;3).
b) f(x)=√(0,5x²-2x); 0,5x²-2x≥0; x(0,5x-2)≥0;
x≥0;
0,5x-2≥0; x≥2/0,5; x≥4; x∈[4;+∞);
x≤0;
0,5x-2≤0; x≤2/0,5; x≤4; x∈(-∞;0];
OO: x∈(-∞;0] ∪ [4;+∞);
c) f(x)=ln(2/x-3);
2/x-3>0; 2/x>3; x<2/3; x∈(-∞;2/3);
x≠0; x∈(-∞;0)∪(0;+∞)
OO: x∈(-∞;0)∪(0;+∞) ∩ (-∞;2/3) ⇒ x∈(-∞;0)∪(0;2/3)
d) f(x)=√(3/(x-1)+2);
3/(x-1)+2≥0; 3+2(x-1)≥0; x≥-1/2; x∈[-1/2;+∞)
x-1≠0; x≠1; x∈(-∞;1)∪(1;+∞)
OO: x∈[-1/2;+∞) ∩ (-∞;1)∪(1;+∞) ⇒ x∈[-1/2;1)∪(1;+∞)
Для того,чтобы найти накопленную частоту,надо сложить количество обуви каждого размера->
3+6+5+4+7=25
ответ:D)25