М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
olgafedotova2017
olgafedotova2017
03.02.2020 16:30 •  Алгебра

Разложите на множитель 216 - 8 игрек в кубе​

👇
Ответ:
darina2340
darina2340
03.02.2020

По формуле разности кубов:   a^{3} -b^{3} =(a-b)(a^2+ab+b^2)

   216-8y^3=

=8(27-y^3)=

=8*(3^3-y^3)=

=8*(3-y)(3^2+3y+y^2)=

=8*(3-y)(9+3y+y^2)

ответ:     8*(3-y)(9+3y+y^2)

4,5(48 оценок)
Открыть все ответы
Ответ:
Maximus20161
Maximus20161
03.02.2020
1) х=5+2у                             2) 3х+у=14
   3(5+2у)+8у=1                        5х-у=10 сложим эти уравнения
15+6у+8у=1                             8х = 24
14у=-14                                     х=24/8=3
у=-1,                                         у=14-3*3=14-9=5
х=5-2=3,
ответ:(3;-1)                             ответ: (3; 5)
3) х=7-4у                                  4) 2х-3у=5  |*2 , умножим  ур-ние на 2
   7-4у-2у=-5                                 3х+2у=14 |*3, умножим на 3 уравнение
  6у=12                                         4x-6y=10    и выполним сложение   
   у=2                                            9x+6y=42   этих ур. и получим
   х=7-8=-1                                    13x=52,  x=4,  
ответ: (-1; 2)                                 12+2y=14
                                                       2y=2, y=1
                                                    ответ: (4; 1)
4,6(57 оценок)
Ответ:
Мэй15
Мэй15
03.02.2020

1. Чтобы начертить графики, необходимо составить таблицу значений для каждого выражения для соответствующих значений x:

 

x2+6x+8,еслиx∈[−6;−1].

 

x  

−6

−5

−4

−3

−2

−1

y        

 

x+2−−−−√+2,еслиx∈(−1;2].

 

x  

−1

0

1

2

y      

 

2. Заполняем обе таблицы значениями y, которые можно вычислить, подставив в выражение вместо x соответствующие значения аргумента:

 

x2+6x+8,еслиx∈[−6;−1];

 

a) y=(−6)2+6⋅(−6)+8=36−36+8=8;

b) y=(−5)2+6⋅(−5)+8=25−30+8=3;

c) y=(−4)2+6⋅(−4)+8=16−24+8=0;

d) y=(−3)2+6⋅(−3)+8=9−18+8=−1;

e) y=(−2)2+6⋅(−2)+8=4−12+8=0;

f) y=(−1)2+6⋅(−1)+8=1−6+8=3.

 

x  

−6

−5

−4

−3

−2

−1

y  

8  

3  

0  

−1  

0  

3

 

x+2−−−−√+2,еслиx∈(−1;2];

 

y=−1+2−−−−−−√+2=1–√+2=1+2=3;

y=0+2−−−−√+2=2–√+2≈1,41+2≈3,41;

y=1+2−−−−√+2=3–√+2≈1,73+2≈3,73;

y=2+2−−−−√+2=4–√+2=2+2=4.

 

x  

−1

0

1

2

y  

3  

3,41  

3,73  

4

 

3. Чертим график функции.

 

a4.png

При значении x, равном −1, по интервалу первого выражения точка должна быть закрашенной, но по интервалу второго выражения точка должна быть незакрашенной. В этой ситуации точка на чертеже должна быть закрашенной.

 

4. Интервалы возрастания и убывания функции определяем по оси x. Если при возрастании значений x значения функции возрастают (на рис. график идёт вверх), то на этом интервале функция возрастает. Если при возрастании значений x значения функции убывают (на рис. график идёт вниз), то на этом интервале функция убывает.

 

a4.png

 

Интервал возрастания функции: x∈[−3;2].

Интервал убывания функции: x∈[−6;−3].

 

5. Точку, в которой функция непрерывна и меняется с возрастающей на убывающую, называют максимумом функции. Точку, в которой функция непрерывна и меняется с убывающей на возрастающую, называют минимумом функции. Минимумы и максимумы функции называются экстремумами. Поэтому экстремумом функции является f(−3) = −1 (минимум функции).

 

6. Наибольшее и наименьшее значения функции находят по оси y, и они часто совпадают с экстремумами функции. Разница в том, что наибольшее и наименьшее значения есть в том случае, когда функция прерывается. В данном примере наибольшим значением функции является f(−6) = 8, наименьшим значением функции является f(−3) = −1.

 

7. Положительные и отрицательные значения функции определяют по оси x. Та часть функции, график которой находится ниже оси x, является отрицательной, а та, которая находится выше оси x, является положительной. Следовательно, функция положительна, если x∈[−6;−4)∪(−2;2], и отрицательна, если x∈(−4;−2).

 

8. Так как функция не симметрична ни относительно оси y , ни относительно начала координат, то она является ни чётной, ни нечётной.

 

9. Нулями функции являются те значения, при которых функция касается или пересекает ось x:

 

x1=−4,т. к.f(−4)=0;

x2=−2,т. к.f(−2)=0.

 

10. Точки пересечения с осями x и y можно определить по графику:

 

a) точки пересечения с осью x: (−4;0) и (−2;0);

б) точка пересечения с осью y: (0;3,41).

Объяснение:

4,8(79 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ