Y=4-x² 1. ОДЗ: x∈(-∞;+∞) 2. Чётность функции: 4-х²=4-(-х)²≡4-х², ⇒ функция чётная (симметричная относительно оси ОУ). 3. Критические точки: y`=(4-x²)`=-2x=0 у(0)=4-0²=4 ⇒ уmax=4, а (0;4) - точка перегиба. x=0 y`=0 ⇒ y`(0)=0 ⇒ имеем два интервала: -∞+0-+∞ Знак интервала определили простой подстановкой значений из интервала в уравнение у`=-2x y`>0 - функция убывает. y`<0 - функция возрастает. 4. Исследование на вогнутость и выпуклость: Точка перегиба х=0 у=4-х²=0 х₁ -2 х₂=2 -∞+-2+0-2-+∞ ⇒ x∈(-∞;0) - выпуклая. x∈(0;+∞) - вогнутая. Вывод: это парабола, опущенная вниз, вершина которой поднята относительно оси ОУ на 4 единицы.
Y=4-x² 1. ОДЗ: x∈(-∞;+∞) 2. Чётность функции: 4-х²=4-(-х)²≡4-х², ⇒ функция чётная (симметричная относительно оси ОУ). 3. Критические точки: y`=(4-x²)`=-2x=0 у(0)=4-0²=4 ⇒ уmax=4, а (0;4) - точка перегиба. x=0 y`=0 ⇒ y`(0)=0 ⇒ имеем два интервала: -∞+0-+∞ Знак интервала определили простой подстановкой значений из интервала в уравнение у`=-2x y`>0 - функция убывает. y`<0 - функция возрастает. 4. Исследование на вогнутость и выпуклость: Точка перегиба х=0 у=4-х²=0 х₁ -2 х₂=2 -∞+-2+0-2-+∞ ⇒ x∈(-∞;0) - выпуклая. x∈(0;+∞) - вогнутая. Вывод: это парабола, опущенная вниз, вершина которой поднята относительно оси ОУ на 4 единицы.
(x+6)/(2+x²)-3<0 на 3 даем(2+x²) и не забудем дробь
(x+6)-3(2+x²)/(2+x²)<0
(x+6-6-3x²)/(2+x²)<0
(x-3x²)/(2+x²)<0
дробь надо ≠0
2+x²≠0
x²≠-2
x≠-√2
(-∞;-√2)V(-√2;+∞)
-3x²+x=0
3x²-x=0
x(3x-1)=0
x=0; 3x-1=0 3x=1 x=1/3
[0;1/3]
[0;1/3] , (-∞;-√2)V(-√2;+∞) = (-∞;-√2)V(-√2;+∞)