Ну, наччнем с того, что предположим, что сутки у них одинаковы по длительности и сутки состоят из целого числа часов, часы состоят из целого числа минут, минуты состоят из целого числа секунд.
Значит надо искать сомножители 715 - узнать вообще на сколько равных целых кусочков можно разделить это число: 715=5*11*13 получается, что возможны такие варианты: 715 минут - это 1) 5 суток по 11 часов, в каждом часе 13 минут 2) 5 суток по 13 часов, в каждом часе 11 минут 3) 11 суток по 5 часов, в каждом часе 13 минут 4) 11 суток по 13 часов, в каждом часе 5 минут 5) 13 суток по 5 часов, в каждом часе 11 минут 6)13 суток по 11 часов, в каждом часе 5 минут
по условию "минут в часе меньше, чем часов в сутках" - значит варианты 1, 3 и 5 не верны,
в оставшихся вариантах умножим часы на минуты - узнаем, сколько минут в сутках: на это число должно нацело делиться суточное к-во секунд - известные нам 1001:
5 суток по 13 часов, в каждом часе 11 минут - 143 минуты в сутках
11 суток по 13 часов, в каждом часе 5 минут - 65 минут в сутках
13 суток по 11 часов, в каждом часе 5 минут 55 минут в сутках
разложим на множители 1001 1001=7*11*13
вот они, знакомые 11*13 = 143 Получается, что только первый вариант имеет такие числа, чтобы суточное количество секунд нацело делилось на суточное к-во минут!
Итак, на планете Шелепука неделя состоит из 5 суток, сутки состоят из 13 часов, час состоит из 11 минут, минута состоит из 1001/143 = 7 секунд!
Найдем стороны четырехугольника АВСD: Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА. АВ{1;3}, |AB|=√(1+9)=√10. BC{3;1}, |BC|=√(9+1)=√10. CD{-1;-3},|CD|=√(1+9)=√10. AD{3;1}, |AD|=√(9+1)=√10. Итак, в четырехугольнике все стороны равны. Ромбом называется параллелограмм, у которого все стороны равны. Если все противоположные стороны ПОПАРНО равны: AB = CD, BC=DA, то четырехугольник АВСD - параллелограмм. У нас выполняются оба условия, значит четырехугольник АВСD является ромбом или квадратом. Но для того, чтобы доказать, что это НЕ КВАДРАТ, определим угол между двумя соседними векторами. Угол α между вектором a и b: cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. В нашем случае: cosα=(3+3)/[√(1+9)*√(9+1)] = 6/10 = 0,6. То есть угол между векторами АВ и ВС НЕ ПРЯМОЙ. Этого достаточно, чтобы доказать, что четырехугольник АВCD не квадрат. Следовательно, четырехугольник АВCD - РОМБ. Что и требовалось доказать...
Г
Объяснение:
в ответе