Объяснение:
Упростить:
1)Задание на разность квадратов. Формула: а²-в²=(а-в)(а+в)
Значит, нужно сворачивать подходящие выражения в формулу разности квадратов:
а)(а-2)²-(а+2)(а-2)= две последние скобки сворачиваем в разность квадратов:
=(а-2)²-(а²-4)= раскрываем скобки, в первой скобке квадрат разности:
=а²-4а+4-а²+4=8-4а= 4(2-а)
б)(1+d)²+(d+1)(1-d) схема та же, только в первой скобке не квадрат разности, а квадрат суммы. Сворачиваем разность квадратов, раскрываем скобки и приводим подобные члены:
(1+d)²+(1-d²)=1+2d+d²+1-d²=2d+2=2(d+1)
в)(c+3)(3-c)+(c+4)² схема та же, только развёрнутая разность квадратов стоит в начале выражения, в конце квадрат суммы:
(9-с²)+(c+4)²=9-с²+с²+8с+16=8с+25
г)(1+7у)²-(7у-6)(7у+6)=
=(1+7у)²-(49у²-36)=
=1+14у+49у²-49у²+36=
=14у+37
д)(2b-5a)(2b+5a)-(2b+5a)²=
=(4b²-25a²)-(2b+5a)²=
=4b²-25a²-4b²-20ab-25a²=
= -50a²-20ab=
= -10a(5a-2b)
Объяснение:
Упростить:
1)Задание на разность квадратов. Формула: а²-в²=(а-в)(а+в)
Значит, нужно сворачивать подходящие выражения в формулу разности квадратов:
а)(а-2)²-(а+2)(а-2)= две последние скобки сворачиваем в разность квадратов:
=(а-2)²-(а²-4)= раскрываем скобки, в первой скобке квадрат разности:
=а²-4а+4-а²+4=8-4а= 4(2-а)
б)(1+d)²+(d+1)(1-d) схема та же, только в первой скобке не квадрат разности, а квадрат суммы. Сворачиваем разность квадратов, раскрываем скобки и приводим подобные члены:
(1+d)²+(1-d²)=1+2d+d²+1-d²=2d+2=2(d+1)
в)(c+3)(3-c)+(c+4)² схема та же, только развёрнутая разность квадратов стоит в начале выражения, в конце квадрат суммы:
(9-с²)+(c+4)²=9-с²+с²+8с+16=8с+25
г)(1+7у)²-(7у-6)(7у+6)=
=(1+7у)²-(49у²-36)=
=1+14у+49у²-49у²+36=
=14у+37
д)(2b-5a)(2b+5a)-(2b+5a)²=
=(4b²-25a²)-(2b+5a)²=
=4b²-25a²-4b²-20ab-25a²=
= -50a²-20ab=
= -10a(5a-2b)
1) 5(4x^3+3*x^(-3,5)-2)^4*(12x^2-3*3,5x^(-4,5))=
=15(4x^3+3*x^(-3,5)-2)^4*(4x^2-3,5x^(-4,5))
2)((6x+5)/(x^6-1))^(3,5)*3,5*(x^6-1)/(6x+5))^(2,5)*(6x^5*(6x+5)-6*(x^6-1))/(6x+5)^2=
=21*(6x^6+5x^5-1)/(x^6-1)*(6x+5)
3)1/(2sqrt(x-1))*1/(1+(x-1))=1/(2xsqrt(x-1))
4)2^(x^2+1)*ln2*2x-sin4x-4xcos4x