1. Область допустимых значений x^2-x-1>0
пусть sqrt(x^2-x-1)=t, t>0
10t-3/t=7
10t^2-7t-3=0
D=169
t1=1
t2=-0,3 не удовл. условию(t>0)
sqrt(x^2-x-1)=1 возводим в квадрат
x^2-x-1=1
x^2-x-2=0
D=9
x1=2
x2=-1
Проверяем ОДЗ х=2 4-2-1=1>0
x=-1 1+1-1=1>0
ответ -1;2
2.принцип такой же
ОДЗ x^2-9x+23>0 данное неравенство справедливо при любом значении х(D<0)
значит и проверку по ОДЗ делать не надо
Пусть sqrt(x^2-9x+23)=t, t>0
2t^2-5t-3=0D=49
t1=3
t2=-0,5 не удовлетворяет(t>0)
sqrt(x^2-9x+23)=3
x^2-9x+23=9
x^2-9x+14=0
D=25
x1=7
x2=2
Объяснение:
выясним с какого номера в прогрессии начинаются отрицательные члены
an<0
an=a₁+d(n-1)=100-23(n-1)=100-23n+23=123-23n<0
123-23n<0
23n>123
n>123/23≈5,3
n=6
a₅ последний положительный член
Sn=(2a₁+d(n-1))n/2
S₅=(2*100-23*4)5/2=270