X^2+7x+10<0, y=x^2+7x+10 - квадратичная функция (парабола). Находим корни по дискриминанту или по теореме Виета (Я нашёл по дискриминанту). D=b^2-4ac,D=7^2-4*1*10=49-40=9=3^2. x1= -b+√D/2a=-7+3/2= -2. x2=-b-√D/2a=-7-3/2= -5. После того,как мы нашли корни (x1,x2),отмечаем точки -5 и -2 на координатной прямой,на оси x,конечно же,после чего рисуем квадратичную функцию (параболу) : y=x^2+7x+10; при a>0,D>0. Обязательно ветви вверх,так как a>0. За пределами ветвей параболы или её области,значения удовлетворяют решению "больше" (>,+),так как нам нужны значения "меньше" (-,<),то ответом будет область не за ветвями параболы,то есть интервал (-5;-2) (знак нестрогий,поэтому интервал и скобки круглые).ответ : x∈ (-5;-2),или ответ можно записать так ; -5<x<-2.
X^2+7x+10<0, y=x^2+7x+10 - квадратичная функция (парабола). Находим корни по дискриминанту или по теореме Виета (Я нашёл по дискриминанту). D=b^2-4ac,D=7^2-4*1*10=49-40=9=3^2. x1= -b+√D/2a=-7+3/2= -2. x2=-b-√D/2a=-7-3/2= -5. После того,как мы нашли корни (x1,x2),отмечаем точки -5 и -2 на координатной прямой,на оси x,конечно же,после чего рисуем квадратичную функцию (параболу) : y=x^2+7x+10; при a>0,D>0. Обязательно ветви вверх,так как a>0. За пределами ветвей параболы или её области,значения удовлетворяют решению "больше" (>,+),так как нам нужны значения "меньше" (-,<),то ответом будет область не за ветвями параболы,то есть интервал (-5;-2) (знак нестрогий,поэтому интервал и скобки круглые).ответ : x∈ (-5;-2),или ответ можно записать так ; -5<x<-2.
1 . 2 хз
Объяснение:
1. f(x)=2x²-3x xo=-1
f `(x)=4x-3
f `(xo)=f `(-1)= 4(-1)-3=-4-3=-7
f(xo)=f(-1)=2(-1)²-3(-1)=2*1+3=2+3=5
y=f(xo)+f `(xo)(x-xo)
y=5-7(x-(-1))
y=5-7(x+1)
y=5-7x-7
y=-7x-2 -искомое уравнение касательной