M(x) = x^4 + 2x^3 + ax^2 + bx + 72
N(x) = x^2 - 5x + 6 = (x - 2)(x - 3)
если один многочлен делится без остатка на другой, то корни одного многочлена, являются корнями делимого многочлена
корни второго 2 и 3
значит и корни первого 2 и 3
2^4 + 2*2^3 + a*2^2 + b*2 + 72 = 0
16 + 16 + 4a + 2b + 72 = 0
2a + b = -52
3^4 + 2*3^3 + a*3^2 + b*3 + 72 = 0
81 + 54 + 9a + 3b + 72 = 0
3a + b = - 69
3a + b - 2a - b = -69 + 52
a = -17
2*(-17) + b = -52
b = -18
ответ a=-17 b=-18
ну можно в столбик разделить, зная что если первый многочлен x^2 -5x + 7 то второй будет (смотрим на первый и свободный члены) типа x^2 + cx + 7 и найти эту c
Неравенства с модулем
|x^2 - 2x + 2| + |2x + 1| <= 5
Линейные
7x - 6 < x + 12
С квадратом
-3x^2 + 2x + 5 <= 0
Со степенью
2^x + 2^3/2^x < 9
С кубом (неравество третьей степени)
2x^3 + 7x^2 + 7x + 2 < 0
С кубическим корнем
cbrt(5x + 1) - cbrt(5x - 12) >= 1
С натуральным логарифмом
(ln(8x^2 + 24x - 16) + ln(x^4 + 6x^3 + 9x^2))/(x^2 + 3x - 10) >= 0
Иррациональные с квадратным корнем
sqrt(x - 2) + sqrt(x - 5) <= sqrt(x- 3)
Показательные неравенства
8^x + 18^x > 2*27^x
Логарифмические неравенства
log(((7 - x)/(x + 1))^2)/log(x + 8) <= 1 - log((x + 1)/(x - 7))/log(x + 8)
Тригонометрические
tg(x - pi/3) >= -sqrt(3)
Квадратное неравенство
25x^2 - 30x + 9 > 0
С четвёртой степенью
(x - 6)^4*(x - 4)^3*(x + 6)/(x - 7) < 0
С дробью
2x^2 - 15x + 35 - 30/x + 8/x^2 >= 0
Решение с целыми числами
(4x^2 - 3x - 1)/(2x^2 + 3x + 1) > 0