Какой формулой пользоваться значения не имеет. На фотографиях представлены решения уравнения .
Если нарисовать числовую окружность, то значение есть координата точки
по оси
, ведь для любой точки числовой окружности справедливо, что
, т.е. точка
имеет координаты
.
Если провести прямую, параллельную оси через точку
, то она пересечётся с числовой окружностью в каких-то точках.
Чтобы было понятнее, советую нарисовать окружность радиусом и центром в точке
и отмечать всё, о чём я пишу.
Теперь рассмотрим эти точки пересечения.
Если , то пересечения будут в первой и второй четвертях.
Если , то пересечения будут в третьей и четвёртой четвертях.
Если , то пересечений тоже два и это
и
.
Если , то пересечение только одно, при чём точка пересечения будет и точкой касания, и равна она
.
Если же , то пересечение тоже одно, тоже является точкой касания, но значение равно
.
А теперь вспомним определение арксинуса. Арксинусом числа называют такой угол
, что
. Главное здесь то, что
может быть углом только первой четверти.
Отсюда же следует, что .
Это прекрасно работает для , ведь
.
Но только недавно мы проверили, что у нас может быть и не одно, а два решения. Как поступить в случае, если арксинус работает только для углов первой четверти, а нам нужно, чтобы он работал во второй? ответ прост. - это число, а
- угол.
Пусть прямая пересекается с окружностью в точках
в первой четверти и
во второй четверти, а точку
на оси
мы обзовём
. Рассмотрим треугольники
и
, в них:
Треугольники и
равны по двум катетам. Из этого следует и то, что их соответственные углы равны. Т.е. угол
и угол
.
Но углы мы отсчитываем от точки , обзовём её
. Тогда угол
. А это угол
первой четверти.
А угол - искомый угол второй четверти.
Как нам известно, все числа на числовой окружности получаются с поворота на определённый угол, пусть - этот угол. И если мы сделаем полный оборот, то мы хоть и придём в ту же самую точку, но вот число уже будет другое, ведь поворачивались мы на другой угол, равный
. Таким образом, чтобы описать все числа, находящиеся в точке на окружности с координатами
надо добавить
, где
- целое (чтобы получились полные обороты).
Вот так и получается первая формула.
Что до второй, то тут всё проще. Выводить её не буду, и так ответ уже километровый. В ней всё работает на чётности . Если
- чётное, то формула трансформируется в
, если нечётное, то в
, ну а
. Т.е. это тоже самое, только записанное в одну строчку. Использовать вторую формулу не советую. Она менее интуитивно понятная. Но если в ней разобраться, то решение уменьшается в размере, это правда.
Как-то так. Фу-у-у-ух. Много. Очень Много Букв.
P.S. Прости за задержку.
Задание №1.
1. На березе растут яблоки - Невозможное.
2. При бросании игральной кости выпала цифра 6 - Равновозможное.
3. За летом наступает осень - Достоверное.
Задание №2.
Всего двухзначных чисел у нас - 90 (от 10 до 99). Проще всего рещать в лоб, выбирая подходящие числа:
1) Нулём оканчивается каждое десятое из них, т.е. всего таких чисел 9. P = 9/90=0,1
2) Из одинаковых цифр состоит каждое одиннадцатое из них, начиная с 11, т.е. всего таких чисел 9. P = 9/90=0,1
3) Больше 27 и меньще 46 - всего 18 чисел, т.е. P =18/90=0,2
4) Квадратами целого числа являются 16, 25, 36, 49, 64, 81 - итого 6. P = 6/90=1/15
Задание №3.
Объяснение:
второе у
х+у=77
2х/3=4у/5-умножим на15
х+у=77
10х=12у
х+у=77
х=1,2у
1,2у+у=77
2,2у=77
у=77/2,2
у=35
х=1,2у=1,2*35
х=42
ответ: 42 и 35