Площадь прямоугольника S = a*h
После увеличения размеров
S1 = [a*(1+50/100)]*[(h*(1-50/100)] = a*h(1+0,5)(1-0,5) =а*h(1²-0,5²)=0,75ah
S1/S = 0,75 - площадь прямоугольника уменьшится
уравнение x²+2x+c=0 не имеет корней, если дискриминант < 0, т.е. с >1
Пример: с = 2 D=4-8=-4 - корней не существует
поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5
Объяснение:
поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5
<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение:
1 задание.) Площадь прямоугольника равна произведению двух его различных сторон, а так как в прямоугольнике высотой к противоположной стороне является его сторона, то площадь можно записать как произведение стороны на высоту, проведенную к ней (эта формула свойственна для всех четырёхугольников имеющих свойства параллелограмма).
Теперь, после вступительной части, приступим к доказательству того, что площадь уменьшится.
S = a*h;
В нашем случае a1 = 1,5a, а h1 = 0,5h.
S = 1,5a*0,5h = 0,75ah; Анализируя получившиеся значение площади, можно сделать вывод, что площадь прямоугольника при данных значениях высоты и стороны составляет 75% от первоначальной площади, а это значит, что площадь прямоугольника уменьшится.
ответ: площадь уменьшится.
2 задание.)
Решим данное квадратное уравнение и получим дискриминант, равный - (1 - с), как известно, если квадратное уравнение не имеет решений, то его дискриминант меньше нуля, в соответствии с этим утверждением решим неравенство:
1 - с < 0 => c > 1
Ближайшее значение "с" при котором уравнение не имеет решений, это 2
ответ: 2