Графиком первой функции является биссектриса первого и третьего координатных углов. Для построения графика второй функции надо выбрать произвольно два значения х и найти значение функции в этих точках, например х=0, то у=-6 и х=-3, то у=0. Провести прямую через точки с координатами (0; -6), (-3;0)
По рисунку можно найти координату точки пересечения, а можно найти эту точку аналитически х=-2х-6
3х=-6
х=-2
(-2;-2)- точка пересечения графиков
Объяснение:
а) х²-2x-15=0
(x²-2x+1)-1-15=0
(x-1)²-4²=0
(x-1-4)(x-1+4)=0
(x-5)(x+3)=0
x₁=5;x₂=-3
ответ:{-3;5}
б)x²+4x+3=0
(x²+4x+4)-4+3=0
(x+2)²-1²=0
(x+2-1)(x+2+1)=0
(x+1)(x+3)=0
x₁=-1;x₂=-3
ответ: {-3;-1}
в)2x²-16-18=0
2x²-34=0
2(x²-17)=0
x²=17
x₁=-√17; x₂=√17
ответ : {-√17;√17}
если в условии ошибка (пропущена переменная х)
2x²-16x-18=0
2(x²-8x-9)=0
x²-8x-9=0
(x²-8x+16)-16-9=0
(x-4)²-5²=0
(x-4-5)(x-4+5)=0
(x-9)(x+1)=0
x₁=9; x₂=-1
ответ: {-1;9}
г)3x²+18x+15=0
3(x²+6x+5)=0
x²+6x+5=0
(x²+6x+9)-9+5=0
(x+3)²-2²=0
(x+3-2)(x+3+2)=0
(x+1)(x+5)=0
x₁=-1; x₂=-5
ответ: {-5;-1}
Объяснение:
а) х²-2x-15=0
(x²-2x+1)-1-15=0
(x-1)²-4²=0
(x-1-4)(x-1+4)=0
(x-5)(x+3)=0
x₁=5;x₂=-3
ответ:{-3;5}
б)x²+4x+3=0
(x²+4x+4)-4+3=0
(x+2)²-1²=0
(x+2-1)(x+2+1)=0
(x+1)(x+3)=0
x₁=-1;x₂=-3
ответ: {-3;-1}
в)2x²-16-18=0
2x²-34=0
2(x²-17)=0
x²=17
x₁=-√17; x₂=√17
ответ : {-√17;√17}
если в условии ошибка (пропущена переменная х)
2x²-16x-18=0
2(x²-8x-9)=0
x²-8x-9=0
(x²-8x+16)-16-9=0
(x-4)²-5²=0
(x-4-5)(x-4+5)=0
(x-9)(x+1)=0
x₁=9; x₂=-1
ответ: {-1;9}
г)3x²+18x+15=0
3(x²+6x+5)=0
x²+6x+5=0
(x²+6x+9)-9+5=0
(x+3)²-2²=0
(x+3-2)(x+3+2)=0
(x+1)(x+5)=0
x₁=-1; x₂=-5
ответ: {-5;-1}
пересечение в точке (-2:-2)
нам необходимо построить 2 графика, для этого сделаем таблицу значений x и y
для графика y=x выглядит так
y 0 1 2 3 4 5
x 0 1 2 3 4 5
для второго
y=-2x-6
x 0 -1 -2 -3
y -6 -4 -2 0