В решении.
Объяснение:
Решить уравнение:
1/(х - 4)² - 7/(х - 4) + 10 = 0
Умножить все части уравнения на (х - 4)², чтобы избавиться от дробного выражения:
1 - 7*(х - 4) + 10*(х - 4)² = 0
Разложить квадрат разности по формуле:
1 - 7*(х - 4) + 10*(х² - 8х + 16) = 0
Раскрыть скобки:
1 - 7х + 28 + 10х² - 80х + 160 = 0
Привести подобные:
10х² - 87х + 189 = 0, квадратное уравнение, ищем корни:
ОДЗ: х ≠ 4;
D=b²-4ac = 7569 - 7560 = 9 √D=3
х₁=(-b-√D)/2a
х₁=(87-3)/20
х₁=84/20
х₁=4,2;
х₂=(-b+√D)/2a
х₂=(87+3)/20
х₂=90/20
х₂=4,5.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
Объяснение:
На листе бумаги нарисуйте проекцию усеченного конуса и пунктиром достройте его до полного конуса с вершиной С.
Проведите центральную ось конуса из точки С.
Обозначьте точки пересечения этой прямой с верхним основанием - О, с нижним - М. Точки О и М являются центрами окружностей верхнего и нижнего оснований.
Обозначим точки пересечения образующей с нижним основанием А, с верхним В.
Из точки В опустим перпендикуляр ИК на нижнее основание.
Рассмотрим рисунок.
ВО=3 см, АМ=6 см, АВ = 5 см.
Фигура ВОМК - прямоугольник (т.к. углы ВОМ и ОМА прямые), значит, КМ=ВО=3 см
АК=АМ-КМ=3 см.
Рассмотрим треугольник АВК
Угол ВКА -прямой, длина гипотенузы 5 см, длина катета АК=3 см.
Длина катета ВК =корень квадратный(АВ^2-АК^2)=4 см
Котангенс угла ВАК=АК/ВК=3/4=0,75
ответ: ответ: 8
Объяснение:
yn=6-9n
6-9n=-66
-9n=-66-6
-9n=-72
n=-72:(-9)
n=8
ответ: 8