1)область значений функции: у≥0; 2)х=(-∞;+∞); 3)корни :x²+4x-5=0; x₁,₂=-2⁺₋√4+5=-2⁺₋3; x₁=-2+3=1; x₂=-2-3=-5; 4)если бы не было модуля,то это график параболы, вершина этой имеет координаты: m=-b/2a=-4/2=-2;n=-D/4a=-(4²+4·5)/4=-9; 5)имеется модуль,поэтому строится график параболы,затем,вся часть графика,которая размещена ниже оси Ох ,строится симметрично осиОх. График будет иметь вид: при х=(-∞;-5)-функция убывает; при х=(-5;-2)-функция возрастает; при х=(-2;1)-функция убывает; при х=(1;+∞)-функция возрастает.
Назрин8, в вашем условии неточность. В том виде, в котором уравнение представлено сейчас, это тождество не только не доказывается, но и вообще в левой и правой части уравнения стоят стоят разные вещи (возьмите для интереса и сравните их в том же маткаде).
Могу предположить, что вы забыли дописать "х" во второй скобке и будет там (3х + 4x^2), и множитель 2 за скобками всё же в первой степени, а не второй. Тогда левая часть легко сворачивается как разность квадратов:
Объяснение:
1) внутренний угол Е будет 80 градусов, поскольку он вертикален углу в 80 градусов. вертикальные углы равны.
угол D=180-80-60=40°
2)если один из внешних углов равен 115, то внутренний будет 65°, поскольку всего сумма должна быть 180.
если один из внешних углов равен 140, то внутренний угол будет 40°.
третий угол будет 180-40-65=75°.
3) углы при основании помечаем как х+30, а угол при вершине как х.
составляем уравнение.
х+30+х+30+х=180
3х=180-30-30
3х=120
х=120/3
х=40
угол при вершине 40°, а углы при основании 40+30=70°.
4) составляем уравнение по внешним углам.
8х+7х+3х=360
18х=360
х=360/18
х=20
8×20=160°
7×20=140°
3×20=60°
это внешние углы. по ним можем найти внутренние.
180-160=20°
180-140=40°
180-60=120°